Stop the rot: evidence and action for handpump quality

Currently, about half a billion people, in sub-Saharan Africa (SSA), equivalent to half of the population, rely on protected and unprotected groundwater point sources for their main drinking water supplies. With the expected increases in rainfall variability due to climate change, sustainable groundwater sources will be evermore important in supporting resilience in the future.

Access to safe, reliable water supplies in low-income countries, particularly in rural areas has been improved through handpumps, which provide a viable alternative to contaminated surface water, open wells and unprotected springs.

Three new reports from the ‘Stop the Rot’ initiative published in March 2022 examine handpump reliance, rapid corrosion, the quality of handpump components and supply chains in SSA. The research looked specifically at the main public domain handpumps – the India Mark Pump, and the Afridev Pump, and also drew on learnings from the Zimbabwe Bush Pump.

Using the most recent data published by the World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF) through the Joint Monitoring Programme (JMP), the ‘Stop the Rot’ research estimates that almost 200 million people in SSA (18.5% of the total population) rely on handpumps to provide them with their main drinking water supply (Figure below). Further, an estimated 700,000 handpumps are in use in SSA. Meanwhile, 23% of the SSA population still rely on unsafe and distant water sources, of which many could benefit from a handpump. At least for a generation, if not much longer, handpumps are here to stay.

Estimated proportion of the total population relying on handpumps for their main drinking water supply

Despite their merits, criticism has been directed towards handpumps. Limited ability to transport large quantities of water, coupled with a lack of storage capacity at the home, means that water from handpumps is usually fetched on a daily basis. Handpumps have also made the headlines: in 2010, an estimated two out of three handpumps in SSA were working; a decade later it was estimated to have only improved to three out of four.  

A handpump breaks down for a specific technical reason (such as the breakage of the chain, an O-ring failing or corroded riser pipes), but its repair depends on the ability of the users, often a community, to raise funds, organise a mechanic and source spare parts. In turn, these depend on other factors within the locality and country, including the available services support mechanisms by governments, NGOs and the private sector. When water services fail, there are negative impacts on health and other human development gains, not to mention the burden on users of finding alternative sources. These may be distant, overcrowded, or contaminated.

A sizeable drop in handpump functionality in the first one to two years after installation is a common occurrence, and represents a premature technical failure. Something went wrong with the engineering – such as the borehole siting, design and/or construction, pump quality or installation, or the pump use – or there was vandalism or theft. Alternatively, the installation may have been rejected by the users from the outset due to its location, or the appearance or taste of the water.

The series of three ‘Stop the Rot’ publications draw attention to rapid handpump corrosion, whereby aggressive groundwater destroys the galvanising layer and so galvanised iron (or poor-quality stainless steel) riser pipes and pump rods essentially rot in the ground at a very fast rate (see Figures below). The term ‘aggressive’ refers to the ability of the groundwater to corrode, disintegrate and deteriorate materials it is in contact with, and includes, but is not limited to acidity is one type of pump.

This phenomenon has been known about since the 1980s. However, this new study finds evidence of rapid corrosion in in at least 20 SSA countries. A related problem is the quality of handpump components. The research draws attention to long supply chains from manufacture to installation, shows that component quality is not consistent and that there is limited guidance on quality assurance, and that in many cases, procedures are lacking.

The study proposes the establishment of an action group of key organisations involved in Rural Water Supplies in SSA, and handpumps in particular, to join hands and take a lead in tackling the challenge. Many actions are needed at international, national and local level. These including raising awareness of the extent that handpumps are used in SSA, which will continue into the future. There is need for sensitization regarding the ongoing rapid corrosion issue, and how it can be addressed alongside incentives for doing so. There is also the need to invest in updating handpump specifications, improving quality assurance mechanisms and strengthening procurement procedures and practice.

The full set of research reports can be downloaded in English and French. There is also a 20 minute presentation available here, and a recording of the RWSN webinar involving the presentation and discussions is available here.

This is a shortened version of a blog that was originally published by PLOS Latitude.

RWSN updates February 2022 and upcoming events

Dear RWSN members

We hope you all had a great start to 2022. The year is already going in full swing, and we would like to share some RWSN updates and upcoming events with you. 

My name is Tommy Ka Kit Ngai and I am the Head of Water, Sanitation and Hygiene at WaterAid UK. At the RWSN Executive Steering Committee on 27 January, I was honoured to accept the role of RWSN Chair for the remainder of WaterAid’s tenure. I have been a RWSN member for about 10 years and have always been encouraged by the unwavering commitment of fellow RWSN members to collaborate and support each other in bringing sustainable and reliable water supplies to all rural people.  Collectively, we have a world-leading, immense pool of knowledge and experience in rural WASH.  I am thrilled to be here. I look forward to learning from and working alongside with all of you.   

Thank you, Louisa Gosling and SDC 

  • It is with much sadness that Louisa Gosling stepped down as Chair of RWSN due to health issues as of December 2021. We thank her so much for her great leadership and passion for the network, and in particular, she worked tirelessly with the Leave no One Behind theme and has been a great advocate of RWSN over the last ten years. We wish her strength and good health in her next chapter. 
  • The Swiss Agency for Development and Cooperation (SDC) has supported this network since the beginning when we were founded as the Handpump Technology Network in 1992. Thanks to their steadfast partnership, RWSN has grown from a mailing list of a few dozen engineers to a diverse, global network of nearly 14,000 individuals and more than a hundred organisations in 167 countries. The RWSN Strategy, Roadmap and ongoing governance review are setting the network on an exciting new path and we will share more details in future updates. SDC’s strategic orientation is shifting and with it our modality of collaboration. We thank the SDC Global Programme Water for providing exceptional support over the last 30 years, and to Dr Daniel Maselli in particular who has been a great ally and guide over the last few years. Switzerland remains committed to improving global water security and we look forward to continuing our partnership in new ways. 

 
Welcome to Ndeye Awa Diagne, Dr. Amita Bhakta, WHO and USAID – and “Data for Action” 

  • Ms Ndeye Awa Diagne (“Awa”) has joined the RWSN executive committee. Awa is a Water and Sanitation Specialist at the World Bank in Washington DC, with 10 years experience, including 6 with the World Bank and 2 at the Société Nationale des Eaux du Sénégal. Her current responsibilities include managing the Bank’s internal community of practice on rural WASH. Linkedin  
  • New Leave No One Behind (LNOB) theme co-lead Dr. Amita Bhakta. Amita is a Freelance Consultant in Water, Sanitation and Hygiene (WASH); Website: Amita Bhakta – Hidden WASHLinkedIn   
  • Welcome to our new RWSN project partners, USAID, who are funding REAL-Water, a five year research programme on rural water headed by Aquaya Institute with KNUST Ghana, ATREESafe Water NetworkAguaconsult and Water Mission
  • We are delighted to be collaborating with WHO as they prepare to finalise and publish “Guidelines For Small Drinking-Water Supplies: Policy Guidance And Supporting Tools”. Look out for more updates later in the year! 
  • Finally, the RWSN Theme “Monitoring and Mapping” will be changing its name to  “Data for Action”; the change will be effective over the course of this year. 

    Upcoming events 
  • On 22nd March we celebrate World Water Day. This year the theme is “Groundwater: making the invisible, visible”. You can take part in the celebration and raise awareness on groundwater by checking the website: https://www.worldwaterday.org/. There are many materials available for download to share with your community and networks, raising awareness on groundwater. RWSN also has a wealth of resources related to Groundwater, see below. 
  • 9th World Water Forum, Dakar – RWSN is delighted to be hosting French/English Session 2A4 on Rural Water Supply Management Models in Room 3 at 9am on 22 March. For those coming to the Dakar, we look forward to welcoming you to this great session, with interesting case studies from Morocco, Madagascar, Senegal, Ghana and Uptime and panellists including the Director General of Water from the Government of Spain. https://www.worldwaterforum.org/  
     

    RWSN resources related to Groundwater 
  • Does your organisation drill boreholes, or perhaps fund others to drill?  If so, check out the wealth of materials on borehole drilling on the RWSN website: https://tinyurl.com/waterdrilling 
  • Do you want a quick, and easy introduction to borehole siting, supervision, procurement and drilling itself?  If so, then watch these very short animated films (available in English and French): https://vimeo.com/channels/drilling 
  • Want to know about how to unlock the potential of groundwater in Africa, then check out this short film: https://vimeo.com/582160363 
  • Are you looking for ways to support access to groundwater at a low cost? Then you should find out if manual drilling is an option? This is a good place to start: https://www.rural-water-supply.net/en/sustainable-groundwater-management/manual-drilling 
  • Want to learn about professional drilling from other RWSN members and partners? There is an archive of presentations and webinars available here: https://vimeo.com/channels/1432819 
  • Do you have questions or concerns about using solar-powered water systems to pump groundwater? This is a good place to start: https://www.rural-water-supply.net/en/sustainable-groundwater-management/solar  

     

    New Groundwater Publications from RWSN and in collaboration with others 

    Dr Kerstin Danert, co-lead of Sustainable Groundwater Development Theme has been extremely busy over the last year and involved in lead and co-author roles on several key publications that will be published over the next month:  

Best regards,

RWSN Chair and secretariat

Rural Community Water Supply: Sustainable Services for All

Covid-19 gave me the chance to commit to paper (or electronic form, if you prefer) some of my understanding and experience gained over several decades. The outcome is a book, published earlier this year, entitled Rural Community Water Supply: Sustainable Services for All.

by Professor Richard C. Carter

Richard encountering some resistance in Kaabong, Uganda (photo. RC Carter)

Many hundreds of millions of rural people – the exact number is not known, and it is immaterial, except that it probably lies between one and two billion – experience inadequacies in the supply of the water which they use for drinking and other domestic uses.

These inadequacies are partly reflected in the ‘normative criteria’ as defined by the human right to water which apply to water services globally. These criteria ask whether and to what extent water services are available, accessible, affordable and acceptable, and whether their quality meets national or international standards. They also highlight the importance of cross-cutting criteria (non-discrimination, participation, accountability, impact, and sustainability).

Continue reading “Rural Community Water Supply: Sustainable Services for All”

Stop the rot – action research on handpump quality in sub-Saharan Africa

Premature corrosion and failure of water supply hardware, particularly handpumps, is widespread in countries within Sub-Saharan Africa, but evidence is limited and largely anecdotal. If drillers are not assured of quality handpumps in country, how can they install pumps that provide water users with the services that they deserve? For the tens of millions of people in sub-Saharan Africa who depend on handpumps to meet their daily water needs, handpump failures threaten their health and livelihoods. 

In cases where communities receive a handpump or components of substandard quality, parts may rapidly wear. If components of the wrong material or inadequate quality are installed in aggressive groundwater, the water supply may not function properly or can fail. Alternatively, the water may not be suitable for drinking. If the handpumps fails, or if water is turbid, discoloured, or has a metallic taste, users may return to using distant or unsafe water sources. If handpump components wear prematurely, communities can incur unnecessary costs in trying to fix the problem. 

A new initiative by Skat Foundation and Ask for Water GmbH under the Rural Water Supply Network (RWSN) strives to find ways to ensure that handpump technologies and spare parts that are installed for drinking water in sub-Saharan Africa are consistently of high quality and can last.

The initiative runs up to March 2022 and will:

  • Document the scale and extent of the problem of handpump corrosion and poor-quality components in sub-Saharan Africa.
  • Understand the handpump supply chains for one country, analysing strengths and weaknesses.
  • Raise awareness of problems of handpump corrosion, poor-quality components alongside practical solutions for water users, drillers, governments, Non-Governmental Organisations (NGOs) and others.
  • Catalyse action through ongoing engagement of international organisations, national governments, research organisations and other stakeholders to catalyse actions to tackle the problem.

The initiative will examine corrosion (see box), quality assurance procedures and supply chains. It seeks to draw out successful or innovative ways of ensuring that users benefit good quality handpumps – consistently! If you would like to contribute to the initiative, especially by sharing your experiences and ideas, please contact Dr Kerstin Danert (ask @ ask-for-water.ch).

Box: Corrosion and handpump quality challenges

The twin challenges of how to ensure the quality of handpumps and how to prevent rapid corrosion of certain pump components have been discussed for over four decades. Corrosion of below-ground handpump components was documented in the 1980s. Research concluded that galvanisation of pump riser pipes and pump rods does not prevent corrosion where the pH < 6.5 and provides limited protection for pH 6.5 to 7. In light of this, programmes have switched riser pipes and pump rods to stainless steel or switched to uPVC riser pipes and stainless-steel pump rods, while some countries standardised on pumps which aims to be fully corrosion resistant by using a uPVC rising main and stainless steel, or fibre glass pump rods. Unfortunately, handpump corrosion problems and concerns over handpump component quality persist. The extent of the problem is not fully known because of relatively little research on this topic, coupled with a lack of information available in the public domain. 
This article first appeared in GeoDrilling International (March 2021)

La planification, l’acquisition de marché et la gestion des forages: un référentiel de l’UNICEF est maintenant publier en français !

La planification, l’acquisition de marché et la gestion des forages: un référentiel de l’UNICEF 

est maintenant publier en français !

Cet outil guide le personnel de l’UNICEF chargé des programmes et des ressources tout au long du cycle de vie d’un projet. Il suit une séquence logique sur les pratiques d’achat de l’UNICEF et formule des recommandations sur les processus (appel d’offres ou demande de proposition de services), les critères d’évaluation, les clauses contractuelles, les devis génériques, les termes de référence et les approches contractuelles visant à des services techniques pour déterminer l’emplacement et la construction de forages et la supervision de travaux de construction (français et Anglais).

Borehole Drilling – Planning, Contracting & Management: A UNICEF Toolkit is now also available in French!

This toolkit guides UNICEF programme and supply staff through the life of a project. It follows a logical sequence on UNICEF procurement practices and provides recommendations on processes, evaluation criteria, contract provisions, generic bill of quantities, terms of reference and contractual approaches to seek technical services for siting of boreholes, borehole construction and supervision of construction works (English – French).

Self-supply: why I wrote the book

by Dr Sally Sutton, SWL Consultants, on her new book “Self-supply: Filling the gaps in public water supply provision” available to buy, or free to download from Practical Action Publishing from 15 February 2021.

Moving from deserts to humid lands

After 14 years working as a hydrogeologist in the deserts of the Middle East on traditional water supplies and wellfield construction, I moved to sub-Saharan Africa, which presented a whole new challenge.

The easier availability of water was the most obvious difference – sometimes too much so (see photo)- but other important ones were the low quality of water and scattered population.

New challenges – Large areas with accessible groundwater and sparse populations – water, water everywhere but not a drop to drink.
Continue reading “Self-supply: why I wrote the book”

The rise or fall of the manual drilling sector in the Democratic Republic of Congo

This is a guest blog by RWSN Member Dr Cheikh Hamidou Kane. This article was originally published in GeoDrilling international and is reposted with thanks. You can read the original article here.

Despite the fact that 50% of Africa’s water fresh water resources are found in the Democratic Republic of Congo (DRC), the Congolese, especially in rural areas, have great difficulty ensuring their drinking water supplies. The very limited progress made in supplying safe drinking water to the population has meant that innovative and affordable solutions, coupled with substantial funding, have been sought.

As a result, in 2009, the DRC government adopted launched an initiative under the National School and Sanitation Village Program (PNEVA) to promote manual drilling as a low-cost water access technology. The Ministry of Health and the Ministry of Rural Development, in collaboration with UNICEF, set out to develop the skills of the private sector and NGOs on manual drilling techniques.

In the first, introductory phase from 2009 to 2012, NGOs were trained, but were not always fully equipped with the necessary skills or drilling equipment to consistently produce quality works that would be sustainable.

Faced with this situation, between 2013 and 2015, UNICEF requested technical support from the Chadian Association for the Promotion of Enterprises Specialized in Low Cost Drilling (ATPESFORC). They set out to help improve the quality of manual drilling in the DRC through the introduction of new drilling equipment of better quality (water jetting) that can be manufactured in the country. During this period, stakeholders in the sector acquired new skills enabling them to build sustainable structures that surpassed the usual drilling record of 27m to reach a depth of 42m thanks to: (i) the use of the new technology (ii) the establishment of national norms and standards for manual drilling including a technical note for water quality testing and (iii) training in administrative, financial and bidding management techniques.

The third phase of the introduction and professionalization of manual drilling in the DRC took place between 2015 and 2019 and focused mainly on the establishment of the national federation of drillers, the identification of areas favourable to manual drilling technologies and the establishment of a national database of water points. During this period and for the first time in the history of the DRC, the supervision of fieldwork was confined to specialized control offices rather than to government agents.

After a decade of learning, adaptation and promotion by UNICEF and its partners, manual drilling technology is now well known in DRC and remains one of the few low-cost technical options adapted to the logistical constraints of the country to improve access to safe drinking water supply in scattered and hard-to-reach rural communities.

Alas the UK Government financial support for PNEVA, through which this manual drilling initiative was implemented, ended in 2019. At present, uncertainties about funding for the manual drilling sector, low household income in rural areas, and the current donor trend to focus investments in urban and peri-urban areas make it difficult to guarantee the continuation of the program on the same scale after 2020. It is also to be feared that the decrease in financing for marginalized areas not considered in village water policies could significantly inhibit safe drinking water access. Such populations are in danger of being left behind. 

The manual drilling sector in the DRC is at a turning point. It could either become widespread, or fail by losing the gains obtained through the PNEVA.  The debate is posed and some elements of response have been developed in a publication through the Rural Water Supply Network (RWSN): https://www.rural-water-supply.net/en/resources/details/930

Dr. Cheikh Hamidou Kane, a native of Senegal, is a Lecturer-Researcher at the University of Thies. He also works as an international consultant and was the UNICEF hydrogeologist overseeing the DRC manual drilling efforts from August 2016 to September 2020.

The need for professional associations for water well drillers

This is a guest blog by RWSN Young Professional Uyoyoghene U. Traoré, geologist and freelance consultant in water and environment. This article was originally published in GeoDrilling international and is reposted with thanks. You can read the original article here.

Groundwater accounts for over 97% of the world’s fresh water with over two million people depending on it for their Survival. In Africa, it is estimated that groundwater provides over 75% of the population with a drinking water supply, and has been said to be essential in securing equitable water access for the rural and urban poor around the world. It has been established that groundwater has a major role to play in achieving the Sustainable Development Goal (SDG) for drinking water. Though very important, groundwater is not properly captured in national or international monitoring. As an unseen resource, it is easily forgotten, making it undervalued and not properly managed.

As an entry point towards the progressive and effective management of groundwater, I undertook a study on the challenges of water well drillers and drillers association in six countries – Angola, Burkina Faso, Mozambique, Nigeria, Uganda and the United State of America was carried out. I tried to understand groundwater issues within these countries from the perspective of drillers themselves. Drillers are in direct contact with the resource, and some have recognised the importance of having a drillers association.

As at the time of the study (2019) only three water well drillers association exist and were active only in Nigeria, Uganda and the USA. In the case of the others (inactive), there is an informal working group in Angola, an organised body in Burkina-Faso and Mozambique.  Where they exist, drillers associations were an entry point to support national, international and local partners in groundwater management, were able to advocate and lobby for sustainable policies and realistic contracts. They also sensitised the public on the resource and helped reduce the presence of unqualified drillers from the sector.

In the study, I identified eight main challenges for water well drillers, namely – capacity, contracts and standards, procurement, finance and payment, corruption, data, logistics, and the availability of spare parts. I also learned about the advantages and disadvantages of having an association, as well as what makes them successful or not. A lack of clarity with respect to groundwater policies, and a lack of capacity by national institutions to implement policies or engage in groundwater monitoring was apparent in four (Angola, Burkina Faso, Mozambique and Nigeria) of the six countries.

So, what did the study reveal?

  • With the exception of the USA, there is a lack of capacity of drillers and national institutions in the countries studied. Drillers often lack the capacity to drill water wells in a sustainable way. In most of the cases, this is due to the absence of dedicated training institutions on groundwater issues or the inability of organised drillers association to engage in the development of its members.
  • Poor contract management, lack of transparency and corruption in procurement processes were mentioned. These have adversely affected the quality of drilled wells leading to a short lifespan of these wells. “Turn- key contracts” (Burkina Faso & Uganda), “No water no pay principle” (Mozambique & Nigeria) and “the gentleman’s agreement” (Angola) are some forms of poor contract identified. The client passes all, or most of the risk of finding water to the drillers – even in places where good groundwater resources are not easy to find.
  • Delayed payments by clients poses danger to the long-term viability of drillers’ businesses. This is a particular challenge in countries where the government is the major client (Angola, Burkina Faso, Mozambique and Uganda).
  • The absence or lack of groundwater data means underestimation of prices of drilling in certain terrains as well as drilling with uncertainty. The USA and Uganda are the only two countries with some form of groundwater data.
  • Drillers associations struggle to sustain themselves on a long term due to lack of finance resulting from low membership. In Mozambique and Burkina Faso for example, some drillers still do not see the need for an association while, there is no dedicated member to run the informal working group in Angola.
  • It was noted that there is a lack of transparency in existing associations except the USA. Leadership find it difficult and costly to be accountable to members and non-members alike.
  • Except for the USA, and more recently Uganda, the associations have not been able to engage in continuous capacity building, or training programs for its members. This has been identified as mainly being a result of lack of funds.

A major concern observed is the future of groundwater. In all six countries studied, it was found that there are very few or no young professionals in the field. This indeed put the future of groundwater development at a very high risk. In addition, very few women were observed to be in the profession.

From my work, I have two sets of recommendations:

  • In the short term, it is imperative that drillers association in other countries be investigated. Prioritise the establishment of drillers associations in countries where there are none and support rekindling inactive ones. The capacity of drillers and national institutions should be strengthened – advocate for compulsory internship programs on a continuous basis. Also, develop school curriculum on water with emphasis on ground water. Create a global platform for young professionals dedicated to training, learning, including internships with local firms.
  • In the long term, there is need to create a global platform for drillers, experts and institutions working on groundwater water issues in collaboration with existing institutions to learn and share best practices. Develop in study and exchange programmes, including creating mechanisms for international internships and volunteering.

I hope, that my study will help to inspire developmental organisation, funders, national institutions and above all drillers themselves to recognise the importance of using professional drillers and to support, and collaborate with water well drillers associations.

The study was carried out by Uyoyoghene U. Traoré as a volunteer for the Rural Water Supply Network (RWSN) under its 2018-2023 young professional engagement strategy. The full study can be downloaded here.

In Memoriam: Mansoor Ali

Mansoor Ali, an active early member of the Hanpump Technology Network (HTN), recently passed on.

Main Photo: 5 June, 2003: HTN Meeting at Durban – Vishwas, Raj, Mansoor (R K Daw)

by Raj Kumar Daw

Summer, 1973, Groundwater Surveys & Development Agency – GSDA, Pune had just been created and was acquiring its drilling rigs. The founding Director of GSDA, Dr. Venkataraman, constantly raided the NGOs for whatever he could get. He sent me word that he was coming to Vadala. I was trying my first attempt at rehabilitating an abandoned bore well adjacent to our workshop. The work had gone well. Dr. Venkataraman arrived, passing through Geological Investigation Team, Ahmednagar, headed at that time by Sarma Nidamarthy. Sarma had sent two of his staff with Dr. Venkataraman. Gautam and Mansoor.

That was the first time I met Mansoor.

Continue reading “In Memoriam: Mansoor Ali”

In Memoriam: Ken McLeod – India Mark II development lead

en McLeod, who died of cancer in Cairns, Australia, on January 23rd at the age of 88, was recruited by Unicef to support India’s village water supply programme from 1974-1978, and played a pivotal role in the development of the India MK II hand pump.

by Rupert Talbot (former UNICEF and past Chair of HTN/RWSN)

Remembering Ken

Ken McLeod, who died of cancer in Cairns, Australia, on January 23rd at the age of 88, was recruited by Unicef to support India’s village water supply programme from 1974-1978, and played a pivotal role in the development of the India MK II hand pump.

The Government of India’s fourth, five year development plan (1969-1974) envisaged the ambitious goal of providing drinking water in the hard rock, drought prone regions of the country, using innovative down-the-hole-hammer drilling and deep well hand pump technology. Drill rigs were to be imported by Unicef and locally made, cast iron hand pumps, supplied and maintained by Government. In 1974, at the end of the plan period, hand pump surveys concluded that 75% of some 40,000 installations were not working. The viability of drilling and hand pump technology was in question and there was the real prospect of UNICEF, the Government of India’s main partner, withdrawing support. The programme was in serious crisis.

Ken McLeod, his 1942 Jeep, and Myra who designed the first India MK II hand pump poster, New Delhi, 1976 (Photo: Rupert Talbot)

Water well drilling was virgin territory for Unicef in the early 1970s and Unicef’s Executive Board had been divided over the decision to invest in such costly technology in the first place. It was now faced with the hard option of either scrapping the programme or keeping faith. It was a close run thing. Fortunately, the ‘pro’ lobby won with the eminently wise decision to halt the supply of drill rigs until the hand pump problem was fixed. Which is where Ken McLeod comes in.

Ken was a pragmatic, no–nonsense, straight talking, tell-it-as-it-is Australian with a diverse engineering background which ranged from marine and civil engineering to blast hole and water well drilling with down-the-hole-hammers. He had an innate sense of what would probably work and what wouldn’t. Obstinacy was also a hallmark. A serious asset as it turned out. Once he had made up his mind it was difficult to persuade him otherwise. And he had a droll sense of humour. His repertoire of stories and anecdotes are legendary within the water well fraternity. It would seem that seriousness of purpose combined with good humour are prerequisites for successful development enterprises. Ken had both these qualities in spades.

Over the course of the next 4 years it fell to Ken to identify, coordinate, argue with and cajole, myriad organisations and individuals to develop what became known as the India MK II hand pump. This was an extraordinarily complex, collaborative venture, involving pioneering NGOs in Maharashtra, birth place of the fabricated steel Jalna, Jalvad and Sholapur pumps, spearheaded by Raj Kumar Daw and Oscar Carlson (names participants in the RWSN Sustainable Groundwater Development Forum will be familiar with); WHO, who were independently trying to develop their own cast iron ‘Bangalore Pump’; The Government of India, whose programme was in dire straits and who were being prevailed upon by the country-wide hand pump industry to continue with the supply of their cast iron products (‘junk pumps,’ in McLeod Speak); and an engineering enterprise, Richardson and Cruddas, a Government of India undertaking tasked with making prototype and then production pumps. It took a McLeod to handle all of that.

Ken McLeod, Arun Mudgal (Richardson and Cruddas) and Rupert Talbot, MK II test area, Coimbatore, 1975. A ‘what to do ?’ moment after experimental cylinders had failed. (Photo: Rupert Talbot)

It is getting on for 50 years since it was eventually agreed by all parties that the Sholapur pump would form the basis of a new design and we were able to make and test the first dozen prototypes under the deep water table conditions of Coimbatore, Southern India. The fact that the India MK II then went successfully into mass production was largely due to Ken’s clarity of vision, direction, smart technical choices and perseverence.

I spoke with Ken for the last time two weeks before he died. We talked of those heady days of trying to get the MK II programme off the ground, of the internal arguments, external battles and technical problem solving in the field and in the factory.

His voice was strong and his mind as clear as a bell as he recalled people, places and events in great detail and he spoke warmly of those free spirits with their out of the box thinking who strove to make better hand pumps.

He was amazed to learn that there are now several million MK IIs in India alone and that it is exported to 40 or more countries. But hugely disappointed that the third party quality assurance procedures set up in his day and honed over the years to become the corner stone of the MK II programme under Ken Gray, had been allowed to slide back and that MK II look-a-like ‘junk pumps’ are being exported from India to Africa. That, we agreed, is a great tragedy.

There were many brilliant, dedicated people involved in the development of the India MK II. Ken never claimed any credit for it himself, but we all know who led the charge. It wouldn’t have happened without him. He was the right man in the right place at the right time. It needed his force of personality, tough and uncompromising ways, solid understanding of technical issues and absolute determination to get the job done in the face of industrial strength, bureaucratic wranglings. Aussie grit personified.

After Unicef, Ken McLeod worked with Shaul Arlossoroff and his UNDP-World Bank Hand Pumps Project, initially based in Nairobi then out of Australia, spending much of his time in China where I have no doubt he brought the same skills and energy to bear as he did in India.

Pragmatic and stoic to the very end he told me he hadn’t got long and was resigned to being on the ‘home stretch’ as he called it.

No funeral for Ken. No grave, no head stone, no epitaph. He wanted none of that. Instead, he has the lasting legacy of the India Mark II hand pump itself. Millions of them in fact.

Kenneth Robert McLeod, 1932 – 2020

RIP

Rupert Talbot
RWSN
26/1/20