Ugandan drillers receive training at the Water Resources Institute

Being back in Uganda again after an absence of five years gives me immense joy. This country of warmth, friendliness and humour, where one can literally have an engaging conversation with anyone, whether askari (guard), taxi driver, fruit and vegetable seller, driller or civil servant. Thus, my few days here have been filled with shared laughter and kaboozi (Luganda for conversation or gossip, but the word conveys so much more).

My visit to Kampala has coincided with the first day of a three-day training entitled “Practical Skills in Drilling” by Uganda’s Water Resources Institute. The training is for 25 drillers and assistant drillers, and comprises a classroom day, followed by two days in the field. As we sit waiting for the training to commence, I ask the participants (all men so far) why there are no women drillers. We talk about the man’s world of drilling (stamina needed), and the women’s world of fetching water (stamina needed). The discussion is engaging and together we reflect on the role of women and men in society and the home. For my side I feel proud to be one of the few women involved in drilling and talk about the two manual companies that I have heard about in Zambia which are run by women. On the spot, I really wish that there were many more of us….

The training commences. The course is a collaboration between the Ministry of Water and Environment (MWE) Water Resources Institute (WRI) and the Uganda Drilling Contractors Association (UDCA). The Chair of the Association, Dr Flavio Pasqualato from Draco (U) Ltd., gives a his opening words of encouragement, followed by the Managing Director, Anthony Luutu of Aquatech Ltd. I am invited to say a few words, and express my delight at seeing training of drillers that I wish was happening on a regular basis in ALL countries on the African continent and beyond.

Training 1

Gracious Sembali systematically collects the expectations of the participants

Dr Callist Tindimugaya (MWE) officially opens the training, pointing out that when people are learning informally from each other, that the message will change over time. I think of the game of Chinese whispers and vow to include it as an icebreaker at the start of my next drilling training course make his point. Callist also adds that “Nobody has all the knowledge; you can learn from each other”, something that is key in adult education.

Training 2

Dr Callist Tindimugaya explains the hydrogeology of Uganda to participants

Trying to raise drilling professionalism is a significant undertaking, and I am struck by the pragmatic messages that Callist conveys to all of us. “If you and your colleagues are doing a good job, you will raise the respect for drillers in Uganda…..we want drillers to be seen as serious and doing good quality work”.

It is clear that the training that the institute has been undertaking has had an effect on training methods. Gracious Sembali from Hippo Technical Services systematically collects the expectations of the participants, and writes them up on a flip chart, carefully grouping them:

  1. Improve knowledge and skills (e.g. when to stop drilling, mud drilling techniques, formation collapse, drilling in sediments)
  2. Standardisation in drilling
  3. Knowledge of different formations
  4. Certification as a driller by UCDA
  5. Knowledge-sharing including experiences
  6. Hydrological aspects and siting
  7. Handling of clients and public relations
  8. Availability of geological maps
  9. Expectations of facilitators
  10. Benefits of UCDA membership and recognition

As I listen, I am struck by the number of issues that are beyond the training course itself, something I have also observed in the course I have run, or managed. The specific skills sought and wider concerns are intertwined.

Alas, I am only able to attend the first presentation, an overview of Uganda’s geology and hydrogeology. I learn a lot, and observe the participants taking notes, and later asking questions. There is so much to be learnt, and the eagerness of these drillers and assistant drillers is apparent. I am delighted at what I see, encouraged, and then start thinking about the number of drillers on the African continent, and that this is needed for all. I try not to get disheartened. There are national training institutes undertaking short courses like these, or longer courses in Nigeria and Ethiopia. In some countries, people are more than aware of the need, and the demand, but are looking left and right for funding, without success. I am glad to have run similar courses, but am so aware that to date these have been ad hoc.

So my closing words? A huge thank you to the Ministry of Water and Environment’s Water Resources Institute and the Uganda Drilling Contractors Association (UCDA) for what you are doing. It is inspirational.

Now, how can training in drilling professionalism be institutionalised elsewhere?

Photo credits: Dr Kerstin Danert.

Corrosion de la pompe à main et qualité des matériaux : Un défi pour le Burkina Faso et le reste du monde

Au Burkina Faso, le nombre élevé de forages équipés d’une pompe à motricité humaine (PMH) qui dysfonctionnent ou qui nécessitent de grosses réparations quelques années seulement après leur construction est alarmant. Les audits techniques effectués en 2013 et 2014 au Burkina Faso sur des forages équipés de PMH ont révélé des situations préoccupantes en termes de qualité de l’eau, de matériel inadapté aux profondeurs des puits et de pompes non-conformes. Dans plus d’un tiers des cas, les forages équipés de PMH dysfonctionnent ou deviennent même totalement inutilisables en moins de quelques années. Entre 0.6 milliards de FCFA (0.9 million d’€) et 2.9 milliards de FCFA (4,5 millions d’€) d’investissements annuels seraient ainsi perdus du fait de l’installation de PMH de qualité médiocre et de diverses malfaçons lors des travaux de construction. Chaque année, plus de 130 000 personnes bénéficient d’un service d’approvisionnement en eau dont la pérennité n’est de ce fait pas assurée au-delà des premières années.

La corrosion des PMH est un phénomène connu depuis plus de 30 ans ; elle demeure pourtant un problème majeur au Burkina Faso car les gouvernements successifs et les agences d’aide au développement ont continué d’installer des pompes fabriquées à partir de matériaux inadaptés. Ces pratiques ont généré des coûts d’entretien élevés, de multiples pannes et le rejet de nombreux points d’eau par les communautés car l’eau y était de mauvaise qualité. La corrosion des PMH est un problème mondial majeur, dont le secteur EAH ne s’est jusqu’à présent toujours pas saisi à sa juste mesure, et qui risque d’empêcher la réalisation de l’Objectif du Développement Durable n°6 au Burkina Faso comme dans d’autres pays. Sur les forums de discussion en ligne du Réseau pour l’Approvisionnement Rural en Eau (RWSN), les experts internationaux font notamment remonter comme principales préoccupations à ce sujet : des matériaux et des pièces composantes de qualité inadaptée, un manque de contrôle qualité, des prix anormalement bas, et des pratiques d’achat et de commande problématiques.

Une enquête sur la qualité des composants des pompes manuelles au Burkina Faso a été lancé début 2017. Des échantillons de la conduite principale montante et de la tige de la pompe ont été achetés auprès de fournisseurs à Ouagadougou, et d’autres échantillons provenaient de pompes en service ou abandonnées. Tous les échantillons ont été testés pour leur composition chimique. En 2019 des tests de composition chimique ont été réalisés sur l’ensemble de ces échantillons. L’analyse des résultats de ces tests révèle que : cinq des six colonnes d’exhaure et deux des quatre tringles ne sont pas conformes aux normes internationales de composition de l’acier inoxydable du grade indiqué. La faible teneur en nickel de ces échantillons signifie notamment que les pièces analysées ont en réalité une résistance à la corrosion moindre que celle qu’elles devraient avoir si elles étaient effectivement du grade indiqué.

Les 13 pièces composantes qui ont été testées dans le cadre de cette étude forment un trop petit échantillon pour s’avérer statistiquement représentatives de la situation du Burkina Faso dans son ensemble.  Cet échantillon corrobore toutefois les inquiétudes du Gouvernement et des foreurs. Il y a quelque chose qui ne va pas avec certains composants disponibles sur le marché, malgré le fait qu’ils soient vendus comme étant de l’acier inoxydable. L’ampleur du problème reste inconnue à ce stade au Burkina Faso ou dans d’autres pays. Comme le montre ce rapport publié par la Fondation Skat, le constat est celui d’un échec du « marché » à fournir systématiquement des matériaux de haute qualité. Afin de rectifier cette situation, il est nécessaire de trouver des solutions à la fois au sein des pays d’importation, comme le Burkina Faso, et au niveau international.

Cette étude rapide a révélé pour le Burkina Faso et au-delà une série d’enjeux interconnectés:

  1. Il est nécessaire de poursuivre les recherches sur l’utilisation des pièces composantes en acier inoxydable afin d’éviter la corrosion des pièces de PMH immergées dans des eaux souterraines agressives.
  2. La norme indienne pour les modèles India Mark II et III comprend quelques erreurs, et aucune option n’est proposée pour les cas d’eaux souterraines agressives. Les normes internationales (notamment celles publiées par SKAT/ Le Réseau pour l’Approvisionnmenet Rural en Eau-RWSN) portant sur les matériaux des pièces de PMH adaptés aux eaux souterraines agressives pourraient être améliorées.
  3. De nombreuses entreprises en Inde vendent des PMH et des pièces de modèles India Mark II et III. Les prix de vente pratiqués par certaines de ces entreprises sont si bas qu’il semble impossible que la qualité de ces pompes et pièces soit conforme aux normes internationales.
  4. Il n’existe aucun organisme international chargé de contrôler systématiquement la qualité des matériaux de PMH, et le rôle et l’activité du Bureau de Normalisation International à ce sujet ne sont pas clairs ni évidents.
  5. Lorsque les PMH sont achetées dans le pays où elles doivent être installées, la longue chaîne d’approvisionnement (souvent anonyme de surcroît du fait de la multiplicité des intermédiaires) fait qu’il n’existe pas ou peu de lien entre les fabricants (situés majoritairement en Inde) et les installateurs des PMH en question. De plus, l’absence de compilation systématique des problèmes rencontrés préalablement signifie que les agences, les entreprises et les ménages s’engagent dans l’installation de PMH sans saisir l’ampleur de ces soucis de qualité et ne s’en rendent compte que trop tard.
  6. De nombreuses PMH utilisées en Afrique sont importées d’Inde (et visiblement du Nigéria également), donc les efforts menés pour résoudre cet enjeu de garantie de qualité doivent absolument inclure l’Inde ainsi que plusieurs pays africains.
  7. L’intérêt des financeurs pour l’équipement des PMH est probablement actuellement au plus bas depuis 30 ans, il s’avère donc très difficile de mobiliser à grande échelle pour développer un processus de certification internationale ou financer davantage de recherches à ce sujet. Une telle initiative nécessiterait d’une part des investissements supplémentaires et d’autre part des engagements de long terme de la part des principales agences et des gouvernements qui financent et mettent en œuvre des programmes d’installation et d’entretien de PMH.

Nous espérons que cette courte étude attirera l’attention des gouvernements, des organismes de recherche et des agences internationales d’aide au développement et les incitera à travailler sur la résolution des problèmes pressants que sont la corrosion et la mauvaise qualité des pièces composantes des PMH. Si rien n’est fait la communauté mondiale de l’approvisionnement en eau, par négligence ou désintérêt, prive de fait les populations rurales du Burkina Faso et d’ailleurs des bénéfices d’un approvisionnement en eau élémentaire et fiable.

L’étude complète peut être téléchargée ici : Qualité et corrosion des pièces composantes des Pompes à Motricité Humaine au Burkina Faso et au-delà (anglais et français)

Crédit photo: Colonnes montantes corrodées photographiées au Burkina Faso dans le cadre de l’audit d’équipements d’approvisionnement en eau in situ. (Kerstin Danert)

 

 

Handpump corrosion and material quality: A challenge for Burkina Faso and globally

In Burkina Faso, concerns have been raised regarding the high number of handpump boreholes that have failed, or need to be rehabilitated within a relatively short time of their initial construction. Physical audits of handpump boreholes in 2013 and 2014 raise concerns over water quality, inappropriate handpump for deep water and non-conformant pumps. In more than one third of cases, the handpump boreholes will function poorly, or cease to function completely within a few years. It is estimated that investments of between FCFA 0.6 billion (€0.9 million) and FCFA 2.9 billion (€4.5 million) per year are lost due to the installation of poor quality handpumps and other aspects of the construction. In one year, over 130,000 people were provided a water supply service that is likely to break down within a few years.

Despite knowledge of handpump corrosion for over 30 years, it remains a problem in Burkina Faso, as governments and aid agencies have continued to install pumps manufactured with unsuitable materials, leading to high maintenance costs, pump failure and rejection of water sources due to poor water quality. Handpump corrosion is a major global problem which the WASH sector has so far, systemically failed to address, and which will impede the realisation of Sustainable Development Goal 6. Concerns cited by experts from a range of countries on the Rural Water Supply Network (RWSN) online discussion platforms include the following: inadequate quality of materials and components, lack of quality control, unrealistic (low) prices and problematic purchasing practices.

A renewed call to investigate the quality of handpump components in Burkina Faso was raised in early 2017. Samples of the rising main and pump rod were purchased from suppliers in Ouagadougou, and additional samples were from pumps in use or abandoned. All samples were tested for their chemical composition. Analysis showed that of the samples, five of six riser pipes, and two of four pump rods did not conform to international standards for the composition of stainless steel of the specified grade. In particular, the low nickel content means that the components have less corrosion resistance than they would if they were of the specified grade.

The small sample size of 13 components tested in this study is not a statistically representative of the situation in Burkina Faso as a whole but it verifies concerns raised by the Government and drillers themselves. Something is not right with some components available on the market, despite the fact that they are being sold as stainless steel. What we do not know is the extent of the problem, in Burkina Faso, or other countries. What is being witnessed, as documented in the new study published by Skat Foundation, is a failure of “the market” to guarantee high quality materials. Addressing this failure requires solutions from within importing countries, such as Burkina Faso, but also internationally.

This short study has shed light on a number of interconnected issues for Burkina Faso and beyond including:

  1. There is no international body systematically controlling handpump material quality.
  2. The need for further research on the use of stainless steel components to prevent the corrosion in aggressive groundwater is needed.
  3. Many of the handpumps used in Africa are imported from India (and apparently Nigeria too). There is often no connection between manufacture (primarily in India) and installation of the pump (in African countries). Agencies, companies or households installing handpumps are not aware of the extent, and scale of quality problems until it is too late.
  4. Donor interest in handpump hardware is arguably at its lowest in 30 years, and so galvanising interest to develop an international certification process or fund research is extremely difficult. Such an initiative would require not only investment, but also long-term commitment from the large agencies and governments that fund and implement programmes installing handpumps and their maintenance.

It is hoped that this short study will trigger interest by governments, and by research organisations, and international development agencies to explore ways to solve the problems of corrosion and poor quality handpump components. If this is not done, by inadvertent neglect, the global water supply community is arguably preventing rural populations in Burkina Faso and beyond from the benefits of a reliable, basic drinking water supply.

The full study is available for download here: Concerns about corrosion and the quality of handpump components in Burkina Faso and beyond (English and French).

Photo credit: Corroded rising mains being photographed as part of a physical audit of water facilitiesin Burkina Faso (Kerstin Danert).

 

Just how much do countries rely on groundwater point sources for their drinking water?

Preliminary analysis of census and national survey data from the 2019 Joint Monitoring Programme, by Dr Kerstin Danert

An important issue for those of us that think a lot about groundwater is the extent that various countries rely on it for their drinking water.

The data presented in the table below has been prepared from the 2019 data published by the Joint Monitoring Programme (JMP) of the World Health Organisation (WHO) and UNICEF (see https://washdata.org/data). Each country has an associated Country File (an excel spreadsheet) with collated data on Water, Sanitation and Hygiene use. This data is gathered from national censuses as well as household surveys such as the Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS) and many others. The country files given excel spreadsheets on the JMP website (not to mention the underlying surveys) contain a wealth of data!

The table below shows the percentage of the population that rely on groundwater point sources as their main source of drinking water for every country and territory for the most recent year for which census or survey data is available. The data is presented for urban, rural and total populations.  Groundwater point sources include protected and unprotected wells and springs, as well as tube wells and boreholes.  Countries may have slightly different nomenclature for the above terms, but these are harmonised in the country tables produced by the JMP.

It is important to note that the data only includes point sources.  Water that is bought from vendors, sold in bottles/sachets or transmitted in pipes may also originate from groundwater, but this information is not generally collated by the censuses or surveys and thus cannot be reflected.  Consequently, the actual dependency of a particular on groundwater for drinking may be considerably higher. In addition, national governments may also make calculations based on the infrastructure available and assumed number of users per source. Due to the different methods of data collection and calculation, these estimates may differ from that collected by the household survey or census.

Please note that the analysis below has not been peer-reviewed, and so if you are intending to use the data, please do check in the respective JMP country file.  You can access Country Files on: https://washdata.org/data. Click on map to select country, download “Country file” and open the “Water Data” tab. In case you spot any mistakes in the table below, please respond in the comments in the blog below or contact the author directly, via rwsn@skat.ch.

Table 1 Groundwater point source as main drinking water source (% of the population classified as urban, rural and total)

Urban Rural Total
Country Census/ Survey Year Ground-water point source as main drinking water source (% of the urban pop.) Census/ Survey Year Ground-water point source as main drinking water source (% of the rural pop.) Census/ Survey Year Ground-water point source as main drinking water source (% of the total pop.)
Afghanistan 2017 57.3% 2017 71.5% 2017 68.1%
Albania 2012 6.4% 2012 14.7% 2012 10.2%
Algeria 2013 6.6% 2013 19.6% 2013 11.3%
American Samoa 2010 0.5%
Andorra 2005 6.6%
Angola 2016 17.7% 2016 43.0% 2016 26.8%
Anguilla 2009 0.7% 2009 0.7%
Antigua and Barbuda 2011 0.4%
Argentina 2013 9.1% 2010 37.7% 2010 15.0%
Armenia 2016 0.1% 2016 2.6% 2016 1.1%
Aruba 2010 1.3%
Australia 2013 0.1% 2013 1.1% 2013 0.5%
Azerbaijan 2017 0.1% 2017 12.1% 2017 5.4%
Bahamas 2010 2.9%
Bahrain 1995 1.4%
Bangladesh 2016 66.4% 2016 94.7% 2016 84.9%
Barbados 2010 0.1% 2012 0.1%
Belarus 2012 2.7% 2012 32.9% 2012 11.1%
Belize 2016 0.3% 2016 4.1% 2016 2.5%
Benin 2014 39.4% 2014 56.8% 2014 48.9%
Bhutan 2017 0.3% 2017 0.6% 2017 0.5%
Bolivia (Plurinational State of) 2017 5.0% 2017 42.2% 2017 16.5%
Bosnia and Herzegovina 2012 3.6% 2012 11.4% 2012 8.9%
Botswana 2017 0.1% 2017 14.9% 2017 5.3%
Brazil 2017 0.4% 2017 8.4% 2017 1.6%
British Virgin Islands 2010 1.9%
Brunei Darussalam 2011 0.1% 2011 0.1% 2011 0.1%
Bulgaria 2001 0.4% 2001 2.7% 2001 1.1%
Burkina Faso 2017 17.1% 2017 85.6% 2017 72.9%
Burundi 2017 8.6% 2017 68.1% 2017 61.5%
Cabo Verde 2007 0.1% 2012 15.1% 2012 5.1%
Cambodia 2016 13.5% 2016 47.2% 2016 40.2%
Cameroon 2014 35.5% 2014 74.1% 2017 50.0%
Canada 2011 0.1% 2011 0.7% 2011 0.3%
Caribbean Netherlands 2001 27.3%
Cayman Islands 2010 4.9% 0.0% 2010 4.9%
Central African Republic 2010 49.1% 2010 92.1% 2010 75.4%
Chad 2015 48.0% 2015 82.4% 2015 74.6%
Chile 2017 0.6% 2017 4.0% 2017 2.4%
China 2013 7.4% 2013 43.1% 2016 22.4%
Colombia 2018 0.4% 2018 13.7% 2018 3.3%
Comoros 2012 5.1% 2012 21.3% 2012 16.2%
Congo 2015 24.9% 2015 65.7% 2015 38.3%
Cook Islands 2011 0.0%
Costa Rica 2018 0.0% 2018 0.5% 2018 0.2%
Côte d’Ivoire 2017 33.9% 2017 71.0% 2017 49.5%
Croatia 2003 3.3% 2003 18.0% 2003 20.0%
Cuba 2011 13.5% 2014 41.9% 2011 18.2%
Curaçao 2011 0.9%
Czechia 2003 1.5% 2003 7.1%
Democratic People’s Republic of Korea 2017 17.1% 2017 58.1% 2017 33.1%
Democratic Republic of the Congo 2014 33.0% 2014 79.4% 2014 63.5%
Djibouti 2017 0.6% 2017 55.5% 2017 10.9%
Dominica 2001 0.6% 2001 6.3% 2009 0.3%
Dominican Republic 2016 0.1% 2016 2.3% 2016 0.7%
Ecuador 2017 1.1% 2017 17.1% 2017 6.1%
Egypt 2017 0.4% 2017 2.1% 2017 1.4%
El Salvador 2017 3.0% 2017 12.3% 2017 6.6%
Equatorial Guinea 2011 44.7% 2011 51.9% 2011 48.4%
Eritrea 2010 3.4% 2010 36.0% 2010 24.6%
Estonia 2010 1.7% 2010 18.8% 2010 6.7%
Eswatini 2014 3.7% 2014 31.5% 2014 24.0%
Ethiopia 2017 5.1% 2017 62.3% 2017 52.0%
Falkland Islands (Malvinas) 2016 43.7%
Fiji 2014 1.1% 2014 13.6% 2014 7.2%
Finland 1999 1.0% 2005 5.0% 2005 1.0%
French Guiana 1999 5.0% 1999 6.0% 2015 13.5%
Gabon 2013 3.3% 2013 37.8% 2013 8.2%
Gambia 2013 14.4% 2013 60.0% 2013 32.6%
Georgia 2017 4.9% 2017 46.9% 2017 22.2%
Germany 2007 0.8% 2007 0.8% 2007 0.0%
Ghana 2017 11.3% 2017 56.7% 2017 36.0%
Greece 2001 0.2% 2001 3.8%
Grenada 1999 4.0% 1999 18.0%
Guadeloupe 2006 0.8% 2006 0.3% 2006 0.8%
Guam 2010 0.1%
Guatemala 2015 5.0% 2015 19.6% 2015 13.4%
Guinea 2016 32.8% 2016 75.3% 2016 59.0%
Guinea-Bissau 2014 41.0% 2014 78.0% 2014 61.7%
Guyana 2014 1.3% 2014 5.5% 2014 4.4%
Haiti 2017 8.1% 2017 56.5% 2017 37.5%
Honduras 2017 2.0% 2017 4.2% 2017 3.0%
Hungary 1990 5.0% 1990 28.9%
India 2016 23.8% 2016 63.7% 2016 50.5%
Indonesia 2018 35.2% 2018 66.9% 2018 49.6%
Iran (Islamic Republic of) 2015 1.8% 2015 4.6% 2015 0.8%
Iraq 2018 0.5% 2018 4.6% 2018 1.8%
Ireland 2006 0.0% 2006 0.5%
Italy 2001 3.9%
Jamaica 2014 0.0% 2014 1.2% 2014 0.6%
Jordan 2016 0.3% 2016 0.7% 2016 0.4%
Kazakhstan 2015 3.2% 2015 21.0% 2015 11.5%
Kenya 2017 21.2% 2017 54.1% 2017 46.2%
Kiribati 2014 0.0% 2014 0.0% 2014 0.0%
Kyrgyzstan 2014 1.1% 2014 11.3% 2014 8.1%
Lao People’s Democratic Republic 2017 9.0% 2017 46.0% 2017 34.7%
Latvia 2003 2.4% 2003 12.5%
Lebanon 2016 10.9%
Lesotho 2015 5.5% 2015 27.8% 2015 21.4%
Liberia 2016 58.7% 2016 74.7% 2016 65.3%
Libya 1995 35.8% 1995 26.9% 2014 19.1%
Madagascar 2016 24.5% 2016 61.6% 2016 57.6%
Malawi 2017 16.3% 2017 86.0% 2017 73.8%
Malaysia 2003 0.8% 2003 6.7%
Maldives 2014 0.1% 2014 0.2% 2017 0.5%
Mali 2018 19.5% 2018 72.3% 2018 56.2%
Marshall Islands 2017 0.2% 2017 2.5% 2017 0.6%
Martinique 1999 0.5% 2015 0.4%
Mauritania 2015 6.5% 2015 49.4% 2015 29.1%
Mayotte 0.0% 2013 2.5%
Mexico 2017 0.8% 2017 9.5% 2017 2.8%
Micronesia (Federated States of) 2010 3.6% 2010 10.7% 2010 9.1%
Mongolia 2016 12.8% 2016 52.7% 2016 25.8%
Montenegro 2013 5.1% 2013 29.2% 2013 14.1%
Montserrat 1998 2.0% 1998 100.0% 2001 0.1%
Morocco 2012 1.0% 2012 27.2% 2012 10.2%
Mozambique 2015 21.4% 2015 62.5% 2015 49.6%
Myanmar 2016 34.3% 2016 74.8% 2016 64.0%
Namibia 2016 0.6% 2016 23.4% 2016 11.8%
Nauru 2011 1.6% 2011 0.0% 2011 1.6%
Nepal 2016 41.8% 2016 46.8% 2016 44.4%
New Caledonia 2014 3.1%
Nicaragua 2014 4.4% 2014 59.9% 2016 21.4%
Niger 2017 33.9% 2017 71.0% 2017 49.5%
Nigeria 2018 45.3% 2018 73.1% 2018 60.0%
Niue 1999 20.0% 2010 0.0%
North Macedonia 2011 1.5% 2011 15.1% 2011 7.7%
Northern Mariana Islands 2000 1.3% 0.0% 2010 1.1%
Oman 2014 5.1% 2014 10.0% 2014 6.4%
Pakistan 2016 30.4% 2016 44.0% 2016 39.1%
Panama 2015 0.7% 2015 14.6% 2017 0.0%
Papua New Guinea 2017 2.8% 2017 7.5% 2017 7.1%
Paraguay 2017 2.1% 2017 9.2% 2017 4.8%
Peru 2017 1.5% 2017 11.1% 2017 3.8%
Philippines 2017 8.4% 2017 37.6% 2017 23.9%
Portugal 2001 0.1% 2001 0.7%
Puerto Rico 1995 1.8%
Republic of Korea 2015 1.0%
Republic of Moldova 2012 16.9% 2012 65.1% 2012 47.1%
Réunion 2015 0.2%
Romania 1994 11.3% 1994 81.0%
Russian Federation 2009 3.4% 2009 19.5% 2009 8.6%
Rwanda 2017 17.2% 2017 58.4% 2017 50.4%
Saint Kitts and Nevis 1999 27.0% 1999 27.0% 2007 0.3%
Saint Lucia 2012 0.5% 2012 2.0% 2012 1.6%
Saint Vincent and the Grenadines 1999 20.0% 2012 0.1%
Samoa 2016 2.6% 2016 5.6% 2016 5.0%
Sao Tome and Principe 2010 4.5% 2010 11.7% 2010 6.9%
Saudi Arabia 2017 0.2%
Senegal 2017 7.2% 2017 35.0% 2017 22.5%
Serbia 2014 2.4% 2014 11.7% 2014 6.2%
Sierra Leone 2017 54.7% 2017 68.9% 2017 62.6%
Sint Maarten (Dutch part) 2011 7.4%
Slovakia 2003 2.3% 2003 2.3% 2011 13.1%
Solomon Islands 2015 8.6% 2016 27.6% 2015 17.5%
Somalia 2017 9.5% 2017 60.5% 2017 34.1%
South Africa 2017 0.5% 2017 10.1% 2017 3.8%
South Sudan 2017 66.5% 2017 80.1% 2017 77.3%
Spain 2003 0.6% 2003 0.3%
Sri Lanka 2016 17.3% 2016 51.0% 2016 45.3%
Sudan 2014 2.2% 2014 13.2% 2014 9.8%
Suriname 2017 3.1% 2017 5.4% 2017 3.8%
Syrian Arab Republic 2018 4.2% 2018 11.6% 2018 8.4%
Tajikistan 2017 5.2% 2017 18.7% 2017 15.4%
Thailand 2016 1.8% 2016 6.2% 2016 4.2%
Timor-Leste 2016 20.0% 2016 33.6% 2016 29.9%
Togo 2017 36.6% 2017 61.2% 2017 51.8%
Tonga 1999 28.0% 1999 24.0% 1996 1.7%
Trinidad and Tobago 2011 0.9% 2011 1.0% 2011 0.9%
Tunisia 2015 0.5% 2015 10.8% 2015 3.7%
Turkey 2013 5.0% 2013 40.0% 2013 13.0%
Turkmenistan 2016 4.4% 2016 34.3% 2016 22.6%
Turks and Caicos Islands 1999 22.0% 1999 40.0% 2012 1.7%
Tuvalu 2007 1.7% 2007 0.5% 2007 1.1%
Uganda 2017 35.8% 2017 79.6% 2017 71.9%
Ukraine 2018 11.5% 2018 61.2% 2018 27.8%
United Arab Emirates 2003 0.2% 2018 0.1%
United Republic of Tanzania 2017 19.4% 2017 50.5% 2017 41.2%
United States of America 2015 3.0% 2015 45.2% 2015 11.1%
Uruguay 2017 0.0% 2017 3.1% 2017 0.2%
Uzbekistan 2015 6.9% 2015 22.7% 2015 14.2%
Vanuatu 2016 1.6% 2016 4.8% 2016 4.0%
Venezuela (Bolivarian Republic of) 2011 4.3% 2011 25.6% 2011 6.8%
Viet Nam 2016 19.5% 2016 57.2% 2016 45.2%
West Bank and Gaza Strip 2017 1.2% 2017 3.2% 2017 1.5%
Yemen 2013 2.3% 2013 43.1% 2013 31.6%
Zambia 2015 26.7% 2015 76.8% 2015 55.8%
Zimbabwe 2017 11.1% 2017 77.5% 2017 57.0%

Photo:  Groundwater provides over 80% of the rural population with its main source of drinking water in South Sudan. Photo taken in 2014 in Northern Bahr el Ghazal by Kerstin Danert.

 

 

 

An opportunity to reflect on manual drilling – UNESCO Seminar in Madrid, 2019

It was 21 years ago that I was first confronted with manual drilling.  I had just started my PhD research at Cranfield University.  The idea was to develop a human operated rig that could break through harder (laterite) formation, test it in an African country, and have it adopted by the private sector… in three years.  Back then I could never have imagined that in 2019 (and in my mid-40’s), that I would join ten others for a seminar hosted in Madrid, Spain on the role of manual drilling to reach universal water access.

Looking back, the goals of the project were unrealistic, but we did not know that at the time, and research provides space for considerable learning. Oh, and by the way, digital cameras were very new on the market in 1998.  My colleague had one, which produced recognisable, but quite grainy images.

The UK Department for International Development (DFID) Knowledge and Research (KAR) funded research project, “Low Cost Drilling” took me to Uganda, and three years of field work in collaboration with the (now) Ministry of Water and Environment and district local governments in Mukono and Mpigi. Following initial trials in a field in the UK, UNICEF and the government enabled use of the rig to provide drinking water supplies within their joint drinking water programme (called WES).

We proved that the new technology (which we called the Pounder Rig) could work, but embedding it in Uganda proved to be beyond us within the three-year period. In the meantime, I had gone from standing in a hotel lobby to make calls to landlines and leaving messages for people who were not there, to having my first mobile phone. My photographs remained analogue; a digital camera being well out of financial reach at the time.

The PhD research process taught me so much, but let me try to stay close to the topic of manual drilling. The subject of innovation diffusion was opened up, and I came to learn that the successful adoption of any technology is brought about by much more than technical aspects (my PhD thesis provides insights into this in case you wish to be one of the very few people to read it).

Over the subsequent years, I was extremely fortunate to have the chance to keep on returning to the subject of manual drilling. The collaboration with UNICEF to follow-up their efforts to support manual drilling professionalization in several countries was a welcome opportunity, leading to not only the 2015 manual drilling compendium, but also more in-depth documentation of the status quo in Nigeria and Chad. In short, we documented that by 2015 manual drilling technologies had provided drinking water sources in at least 36 countries.

Manual Drilling

There are quite a few organisations introducing manual drilling technology, including private enterprises developing new markets; local non-governmental organisations (NGOs) with overseas funding; governments relying on foreign/local expertise as well as foreign companies and NGOs (including several faith-based organisations).

However, as I started to learn while in Uganda some 20 years ago, the diffusion of innovation has different phases.  Broadly speaking, there is the introduction phase, the uptake phase (also known as the valley of death, given that many technologies are not taken up), and the established phase. Mobile phones combined with digital cameras (aka SMART phones), that can enable you to make calls and take high resolution photographs are in the established phase.

Innovation Uptake (003)

Dr Pedro Martinez-Santos, the new UNESCO Chair in “Appropriate Technologies for Human Development” at the Universidad Complutense de Madrid chose the role of manual drilling technologies towards universal water access as the topic for the first seminar of the chair in April 2019.  I was privileged to be among the eleven people who attended the event. I thus had the opportunity to listen to, and learn from professionals talking of specific experiences in Nigeria, Senegal, the Demographic of Congo, Zambia and Guinea Bissau as well as more widely. It was also a chance to present my own experiences and reflections, and engage in open and fee dialogue.

Returning, after two decades, to an academic environment and reflecting on a topic that has engaged me ever since, is something that may only happen once in a lifetime! There is much that I could say about manual drilling, and even more to learn about, but I close this blog with three short messages:

  • Manual drilling is fully established in some countries and less so in others. Globally, a suite of technologies, when used in the right locations and with professional construction methods, can provide drinking water of good quality. Manual drilling undoubtedly has a significant role to play in reaching the Sustainable Development Goal Targets for Drinking Water, especially in remote areas, but also in rapidly growing urban centres where piped supplies are failing to provide reliable services.
  • Manual drilling is not just about technology but also: the businesses that invest; the drillers (male and female) that need be able to work professionally; the data that can be collected; and the question of whether some people are left behind while others tap the water from their back yards. And there is the regulation (alongside other innovations) needed ensure that the sources are, and remain safe to drink, tapping sustainable groundwater resources.
  • I close by urging not only governments, but also development partners to consider manual drilling, and manual drillers in policies, legislation, investments and capacity strengthening efforts rather than leaving it on the margins. As we experienced in Madrid in April, engage in real dialogue and listening with the different actors involved. The rewards may even be beyond your expectations!

You can download all the presentations from the Madrid seminar from here.

RWSN has collated information on manual drilling technologies and associated wider issues here.

Professional Water Wells Drilling: Country Assessments of the Sector – UPDATED!

From 2003 to date, assessments of borehole drilling sector cost-effectiveness and professionalism have been undertaken for the following countries:

Do you know of other national assessments of borehole drilling sector cost-effectiveness and professionalism, perhaps in your own country? If so, please share in the comments below.

Update 21 August 2018

Key points:

  • “Turn-key” contracts should not be used, instead implementing agencies should procure an independent consultant for drilling and supervision and pay drillers for drilling/installation work done.
  • The research supports the guidance set out Danert K., Gesti Canuto J. (2016) Professional Water Well Drilling. A UNICEF Guidance Note  , Unicef , Skat Foundation http://www.rural-water-supply.net/en/resources/details/775

Voyage of groundwater discovery

The first ‘Professional Management of Water Well Drilling Projects and Programmes’ online course, provided by Unicef, Skat Foundation and Cap-Net kicked off in early March 2018.

Running over six weeks, the new online course provides participants with an overview of what is required to improve borehole drilling professionalism in the countries in which they work.

Requiring about six hours of investment per week, plus an additional four for the final assignment, it provides a 40-hour training opportunity for people from all over the world – and they can take part without leaving their home or workplace.

The application process was open for a month, and we received 648 applications spanning 381 organisations and 96 countries. We were astounded by the level of interest. Unfortunately, we could only accept 85 participants, a mere 13% of those who applied, our limitation being funding for sufficient, good facilitation. And so over the past weeks we have been interacting with the participants who work in 35 organisations in 43 countries, of whom 33% are women.

We provide extensive reading material and videos for each module, and the participants engage with the topics through their weekly assignments, participation in online discussion forums and a weekly quiz. For example, they have been tasked with looking at the drilling supervision practices in their own organisations, to prepare a hydrogeological desk study and to reflect on regulatory policies and practices in the countries in which they work.

I was sceptical about online courses until I undertook my first one three years ago. This time, as a facilitator, I’ve witnessed that this course provides an opportunity for people who are already managing drilling projects and programmes to improve their skills and knowledge from far and wide.

So what are we learning every day from the participants? For example, that drilling data is not shared because of fear that the information may be used for gaining the upper hand in mining minerals in one country. Or about the rapidly falling groundwater levels in Sanaa, Yemen, threatening the agriculture and domestic water supplies of the future. And we’ve found out about nuances in the way in which corruption affects the regulation of drilling professionalism in different contexts. Through the course, innovative approaches are also being revealed, such as new regulations in a number of countries, efforts to improve procurement procedures in Nigeria, or post-construction monitoring of water supply systems through private management combining mixed farming and water supply systems in northern Madagascar.

 ourse modules Course modules

 

Integral to the course is that it provides an opportunity for participants to learn from each other, reflect on what can be improved and to debate contentious topics – a key one being who should pay for the cost of drilling a dry borehole? The final assignment in the course involves sharing what has been learned more widely and trying to inspire others to improve borehole drilling management practices. Once the course is complete, all of the materials are accessible through the Cap-Net virtual campus (www.cap-net.org).

So what next, you may ask? Firstly, we shall learn from this first course and make improvements. We would then like to run the course again later in the year, repeat it in the future and also make it available in other languages, starting with French. We know that there is demand. With the structure and materials now developed and online, future courses will be less costly than developing and running the first one. But we need to assure the cost of good facilitation. So if anyone would like to sponsor a course, say as part of corporate social responsibility (CSR), either fully or partially, please contact us at foundation@skat.ch.


Kerstin Danert works for Skat Foundation and Skat Consulting in St. Gallen, Switzerland, and leads the Rural Water Supply Network’s (RWSN) theme on Sustainable Groundwater Development. In 2017 she was awarded the Distinguished Associate Award by the International Association of Hydrogeologists.

This article was first published in GeoDrilling International and is reproduced with permission and thanks.

Getting groundwater off the ground

How do we  raise capacity for borehole drilling and its management globally? If everyone is to have access to safe and affordable drinking water by 2030, in line with the UN Sustainable Development Goals, detailed attention is required for the siting, drilling and installation of boreholes in every single project in every country. Alas, this is not always the case. The result is that many boreholes fail within a very short time.

RWSN members are telling us that they want more in-country training.  The article linked below provides some suggestions. Do you have ideas or incentives for government and private enterprises invest in skill development in the groundwater sector, and in the rural water sector at large?

To find out more:

http://www.geodrillinginternational.com/geodrilling/issue/1179329/getting-groundwater-ground

TrainingdrillingsupervisorsinSierraLeonein2014-860x560

OSCAR CARLSSON (1928 – 2017) Inventor of the Sholapur Hand Pump (basis of the India Mark II Pump)

by Ruper Talbot

Oscar Carlsson, famed designer of the Sholapur hand pump on which the India MK II is based, died in Sweden on January 18th aged 89. Ingrid, his wife of some 60 years, a teacher and social worker, died four months ago.

Oscar’s funeral will take place in his home town of Kristianstad, southern Sweden on February 11th.

Oscar and Ingrid worked together for many years in Sholapur, Maharashtra State, western India, under the auspices of the Mission Covenant Church of Sweden and the Hindustani Covenant Church.

Oscar Carlsson was a rare being, blessed with out-of-the-box imagination and clever engineering skills that he translated into practical solutions to every day technical and social problems. The Sholapur hand pump was perhaps his greatest contribution to improving the lives of rural people, his efforts magnified many times over by the mass produced India MKII.

From technical, trade school teacher in Sweden to managing the Sholapur Well Service in India, Oscar quickly adapted to his new environment, sharing his engineering expertise and teaching workshop practice and draughtsmanship while dreaming up better water lifting devices for the bore wells drilled by his project in the hard basalt of Maharashtra. It is with hand pumps that Oscar’s name is most closely associated.

Unicef is sometimes wrongly credited with inventing the India MKII hand pump and designing it from scratch. While it is true that the pump would not have seen the light of day without Unicef, it is also true that without the pioneering work of the NGO community in Maharashtra, especially Oscar Carlson with his Sholapur pump, there would not have been a MK II at all.  Apart form the pump itself, Oscar devised ball valves for the pump cylinder and a sand trap in the rising main to extend the life of (the then) leather cup washers, amongst many other ingenious ideas to improve efficiency and longevity, all of this, back in the 1970s.

His pivot mechanism for the pump handle, which cleverly avoids lateral stress to the bearings, and his chain and quadrant to maintain alignment and keep the connecting rods in tension that he designed nearly 50 years ago, remain virtually unchanged in the MKII. There are several other features of the pump that still carry Oscar’s imprint and he was pleased with the association, (though he never quite forgave Unicef for not incorporating internal handle stops to prevent crushed fingers in the final design).

The Sholapur hand pump laid the foundation for the India MK II development programme and it was Oscar’s inventive genius and the magnanimity of the Sholapur Well Service in freely sharing his ideas that enabled this to happen.

In recent times, I spent several days each year with Oscar at his home in Kristianstad, reinventing hand pumps (as one does) and debating solar water pumping as The Next Big Thing. Oscar became fascinated by solar. We investigated tracking devices to optimise the use of costly solar panels and purchased a sophisticated German tracker to figure out how it worked. Oscar then cobbled together a design of his own from an old VW windscreen wiper motor and other bits and pieces lying around in his work shop, and set up a test rig on his garage roof to compare performance, correlating his findings with theoretical readings back in India.

And then, a couple of years ago, when he was well into his eighties and we had become alarmed at the plummeting water tables in India’s hard rock areas, he worked on a diaphragm operated cylinder attachment to make pumping easier at depth. I was to have field tested this in India last year, but sadly, time was not on our side.

Oscar was always thinking of something new and never stopped working at his drawing board or with a newly acquired CAD programme, until last year when Alzheimer’s began to take its toll, and then cancer took hold…

These days, it is fashionable to decry the efforts of NGOs and mission based ‘do gooders’. But amongst them are some rare gems. Oscar was one such from the early days of rural development. The 6 million or so MK II hand pumps in India and the thousands more in other countries are a magnificent tribute to Oscar’s engineering prowess and timeless, practical designs. It is something of a tragedy then, that many manufacturers today use inferior material and ignore the specifications and quality norms so critical to the reliability of a MK II hand pump (or anything else for that matter).

Nevertheless, countless rural communities still benefit from Oscar’s creative mind, So, on behalf of them all and on behalf of his many friends and admirers around the world, let me just say, thank you Oscar. Yours was a most useful and valuable life, well lived.

RIP

Ruper Talbot, 8th February 2017

Oscar Carlsson was the first to be designated as Swede of the year Abroad. It happened in 1988 when the Swedes Worldwide celebrated its 50th anniversary.

Quelques astuces pour une exploitation des eaux souterraines réussie: séminaire sponsorisé au 7ème Forum du RWSN, Abidjan

Vous exploitez des nappes phréatiques pour améliorer la desserte en eau des zones rurales? Venez participer à cette journée de séminaire et découvrir comment utiliser les eaux souterraines pour établir des systèmes salubres et durables d’approvisionnement en eau. Nous y aborderons nombre de sujets liés à l’exploitation des eaux souterraines, des informations et des données nous permettant de mieux comprendre ces ressources particulières aux technologies de construction des forages et des pompes solaires qui facilitent la mise en oeuvre d’un approvisionnement en eau efficace.

Quel intérêt ai-je à participer à ce séminaire?
Ce séminaire d’une journée – une approche intelligible de l’exploitation et de l’utilisation des eaux souterraines – dissipera certains des mystères qui entourent encore l’exploitation des eaux souterraines. Il vous fournira aussi des informations pratiques et utiles pour vous aider à mettre en place des systèmes d’approvisionnement en eaux souterraines efficaces.

Les eaux souterraines représentent 30% des réserves mondiales d’eau douce, et plus de 95% de l’eau douce non glacée disponible. Du fait de leur bonne qualité globale, de leur répartition géographique très étendue et de leur résilience aux fluctuations saisonnières (par rapport aux eaux de surface notamment), les eaux souterraines peuvent constituer une source d’approvisionnement en eau salubre, durable et bon marché pour de nombreuses communautés.

Les eaux souterraines sont parfois appelées des atouts cachés – elles se trouvent sous la surface donc il n’est pas facile de les voir ni de se les imaginer, et la multitude de facteurs qui influencent leurs formations et leurs évolutions (la géologie, la topographie, le climat, le type et l’utilisation des sols, et même les activités humaines) font que leur fonctionnement est souvent difficile à comprendre.

Qu’est-ce que je vais y apprendre?
Nous devons mieux comprendre les eaux souterraines si nous voulons les exploiter de façon sûre et durable. Or pour les comprendre nous avons besoin de données et d’informations fiables, qui sont souvent difficiles à trouver.

La première moitié de ce séminaire répondra donc aux questions suivantes:

  • Quelles sont les données et les informations nécessaires pour bien comprendre les eaux souterraines et pour les exploiter de façon durable?
  • Comment pouvons nous efficacement collecter et stocker des données sur les eaux souterraines afin de constituer une banque d’information d’excellente qualité qui soit accessible, pratique, bon marché, facile à gérer et utile pour les projets d’exploitation des eaux souterraines en cours et à venir?

Nous allons examiner les données obtenues à différentes échelles – depuis les initiatives internationales jusqu’aux données locales de sites spécifiques – et nous nous concentrerons sur le niveau national avec la présentation d’une part de l’Atlas des eaux souterraines en Afrique et d’autre part d’études de cas de dispositifs nationaux en Afrique de l’ouest de collecte et de stockage de données sur les eaux souterraines. Les participants auront l’opportunité de mentionner les problèmes et les enjeux liés aux données sur les eaux souterraines (la collecte, le stockage, la gestion et l’usage) qu’eux même rencontrent dans leur pratique professionnelle et nous essaierons de leur proposer des solutions pragmatiques pour l’avenir.

La deuxième moitié du séminaire sera consacrée aux aspects pratiques de l’exploitation des eaux souterraines pour montrer comment des solutions adéquates en terme de construction des forages, et de pompes et de distribution solaires peuvent créer les conditions d’un accès à une eau salubre rentable et durable pour celles et ceux qui en ont le plus besoin.

Nous présenterons comment certaines méthodes de construction et d’entretien des forages peuvent à la fois fournir un approvisionnement en eau potable dépourvu d’E. Coli et qui durera sur plusieurs générations, et contribuer à la protection des sources d’eaux souterraines. Les participants recevront également des outils et des conseils méthodologiques pour la rédaction des spécifications techniques des forages afin de s’assurer que les sources d’eaux souterraines soient salubres et durables.

De la construction des forages nous passerons ensuite aux technologies de pompage et de distribution solaires, en montrant que cela représente souvent une option avisée et viable pour la fourniture de services ruraux en eau potable, en particulier lorsque la mauvaise qualité des eaux souterraines ou qu’une forte densité et croissance démographique limitent les possibilités d’utiliser des forages équipés de pompes manuelles. Nous présenterons plusieurs études de cas allant des points d’eau isolés aux réseaux de distribution centralisés et ayant toutes de faibles taux d’échec et des coûts de cycle de vie très limités. Nous en tirerons une série d’enseignements sur la conception, la construction et la mise en œuvre des systèmes d’approvisionnement en eau fonctionnant à l’énergie solaire.

Qui devrait participer à ce séminaire?
Toute personne intéressée par les services en eau dans les zones rurales, et en particulier par les thèmes des eaux souterraines et de l’approvisionnement en eau. Nous espérons accueillir une grande variété de participants appartenant à différents types d’organisations et à différents niveaux de responsabilité – Etats, ONGs, secteur privé, praticiens et universitaires.

Qui présentera le séminaire?
Le séminaire est sponsorisé par le programme de recherche UPGro (Libérer le potentiel des eaux souterraines pour les populations pauvres) et Water Mission. Il sera présenté par plusieurs experts africains, européens et américains des eaux souterraines.

Quand et où aura-t-il lieu?
Vendredi 2 décembre, 7ème Forum du RWSN (salle Bamako), Abidjan, Côte d’Ivoire

Le séminaire sera présenté en anglais avec une traduction simultanée, et des facilitateurs francophones et anglophones seront présents tout au long de la journée.