Hydrogeology of southern Madagascar: new mapping tool

BushProof Sàrl, drawing on more than 15 years’ experience of working in southern Madagascar, supported by two hydrogeologists from the Swiss Agency for Development and Cooperation (SDC), set out to work in an appropriate way on knowledge of aquifers in the regions of southern Madagascar. Together, they financed and created a mapping tool to improve knowledge of the functioning of groundwater in southern Madagascar, which was completed in 2023.

The south of the island of Madagascar has been experiencing prolonged periods of drought for several years. The growing local populations there now have very limited access to water, leading to deteriorating living conditions. However, large quantities of water flow through this area via aquifers whose functioning remains poorly understood.

Continue reading “Hydrogeology of southern Madagascar: new mapping tool”

Hydrogéologie du Sud de Madagascar: nouvel outil cartographique

BushProof Sàrl, mettant à profit une expérience de travail de plus de 15 ans dans le Sud de Madagascar, appuyé par deux hydrogéologues de la Direction du Développement et de la Coopération (DDC), s’est proposé de travailler de manière appropriée sur la connaissance des aquifères des régions du Sud de Madagascar. Ensembles, ils ont financé et créer un outil cartographique afin d’améliorer la connaissance du fonctionnement des eaux souterraines dans le Sud de Madagascar. Cet outil a été réalisé en 2023.

Le Sud de l’île de Madagascar connait, depuis plusieurs années, des périodes prolongées de sécheresse. Les populations locales grandissantes y ont aujourd’hui un accès très restreint à l’eau, ce qui engendre des conditions de vie dégradées. Pourtant, d’importantes d’eau transitent dans cette zone via des aquifères dont le fonctionnement reste mal connu.

Continue reading “Hydrogéologie du Sud de Madagascar: nouvel outil cartographique”

El camino hacia el desarrollo de herramientas para el manejo de activos

Esta entrada fue realizada por PRACTICA Foundation como miembro de la RWSN.

En el ultimo post, se mostraron las herramientas para el manejo de activos que se estan desarrollando por la Alianza WASH Internacional. Las experiencias previas demostraron que utilizar un enfoque basado en los usuarios es importante para incrementar el impacto de los proyectos. Para este caso, las actividades principales incluyeron un mapeo de usuarios y sus necesidades, diseño de herramientas y pruebas en campo asi como su promocion en las comunidades.

Aditi Goyal, coordinadora de Smart-tech se refiere al proceso de diseño como uno basado en pequeñas iteraciones.

“Hay muchas maneras de llegar al mismo punto. Lo importante es llegar a donde el usuario necesita que lleguemos

Ella se refiere a las características, usabilidad y adaptabilidad de las herramientas que se están desarrollando. Destacando la importancia de escuchar los puntos de vista de todos los actores que se encuentra involucrados en el proyecto. De experiencias previas, Aditi está consciente que los primeros borradores siempre tienden a ser completamente diferentes a lo que se entregan como producto final. Sin embargo, el proceso de confrontar y discutir las ideas conlleva a una etapa de maduración de las mismas.

El proceso

A continuación, se presenta el proceso que se ha adoptado para el desarrollo de las herramientas para el manejo de activos:

1. Mapeo de usuarios y sus necesidades

El proceso comienza con trabajo de campo, interactuando con las comunidades locales para entender el contexto en el cual se van a utilizar las herramientas. Este proceso incluye un mapeo de quienes serán los usuarios finales, definir sus características en relación a sus medios de vida, conexión a internet, nivel educación y a la manera en la que actualmente obtienen y utilizan la información relacionada a sus sistemas de agua. Definitivamente, esto contribuye a determinar acertadamente cuales son las características de las herramientas que harán la vida de los usuarios mas fácil.  Un enfoque participativo e inclusivo asegura que los grupos vulnerables sean tomados en cuenta durante todo el proceso.

2. Diseño y desarrollo del producto

En esta sección se aborda la forma final que tendrán las herramientas, así como su contenido. Este proceso se lleva a cabo por medio de múltiples iteraciones que deben incluir a todos los actores. De acuerdo a la experiencia de la Alianza WASH Internacional, un buen mapeo de necesidades siempre facilita el proceso de diseño. Comúnmente, este proceso se lleva a cabo por medio de trabajo de campo. Sin embargo, debido a las restricciones impuesta por la pandemia de Covid-19, esto no fue posible para este proyecto.

3. Pruebas, promoción y entrega de las herramientas.

Este proceso no se ha realizado aún. Una vez que las herramientas hayan sido programadas y probadas por las organizaciones locales en Nepal (CIUD y Lumanti) se va a identificar y a proveer de apoyo técnico a una institución local que se encargue de implementar y adoptar las herramientas en todo el país. La aplicación web, el tablero de control y la herramienta de aprendizaje online serán circuladas con todos los grupos para los que ha sido diseñada. Las herramientas se encuentran en un ambiente publico para permitir cambios y mejoras conforme son necesarios (para este proyecto, el ambiente de Moodle ha sido seleccionado). El software recibirá mantenimiento por los próximos 5 años, por la misma compañía que lo desarrollo.

Lecciones aprendidas…hasta ahora.

Algunas reflexiones finales han sido obtenidas de las discusiones que han tomado lugar en el proyecto.

Los comentarios de los usuarios son de suma importancia para lograr herramientas robustas. El equipo de diseño necesita pasar tiempo en el campo, entrevistando a los futuros usuarios y entendiendo las necesidades reales. Muchas veces, lo que creemos que necesitan los usuarios, tiende a ser completamente diferente a lo que realmente necesitan. Flexibilidad, comunicación y buena planeación ayudan a solventar las dificultades en los proyectos. Por ejemplo, para este proyecto no fue posible realizar trabajo de campo debido a las restricciones impuestas por Covid-19. Para superar esto Smart-tech distribuyó las herramientas con el personal de campo para verificar su usabilidad y obtener comentarios con respecto a su implementación en condiciones reales. Estas acciones incrementan la comunicación entre los actores involucrados, ayudando a alcanzar las metas de una manera mas eficiente. Como se refiere Aditi:

‘Tener una planeación adecuada ha sido importante para el proyecto, ya que permite monitorear los productos y revisar si se han alcanzado las metas en tiempo y forma’

Agradecimiento especial para Aditi Goyal por su participación al proveer información para este blog. Este documento has sido creado por la Fundación Practica como miembro de la Alianza WASH Internacional, como p arte del Consorcio WASH SDG. Para mas información por favor contactar: info@practica.org; o visita http://www.practica.org. Foto: CIUD Nepal.

The road map for Asset Management tools development

This is a guest blog by RWSN Member Organisation PRACTICA Foundation.

In the last blog post, the Asset Management tools under development by the WASH Alliance International were presented. Previous experiences demonstrated that including user-centered approaches is key to increase the impact of project activities. The main activities for this project include a needs’ assessment, user story mapping, tool design, field testing promotion and the roll out of the tools.

Aditi Goyal, the e-learning development coordinator at Smart-tech, a Nepalese tech company, refers to this project as a continuous iterative process.

“There are many ways to get to the same place. The important thing here is to get where users take us”

She is referring to the features, usability and adaptability of the tools under development. Highlighting the importance of listening to everyone’s point of view represents an advantage for project implementation. From her previous experiences, she knows that first drafts tend to differ completely to what is delivered as final products. However, they are useful for the maturity process in which the ideas are confronted, shared and thus improved by a continuous feedback process.

The roadmap

Below, we present the process adopted to develop the asset management tools:

1. Need’s assessment and user story mapping

We began the process by going into the field. Enabling the interaction with local communities and understanding the context where the asset management tools would be piloted. This process included mapping of the potential users, defining their characteristics in terms of livelihoods, internet connectivity, literacy rates, and their current way of collecting and using information to perform works related to water system management. This supported in defining what the tools need to do to make their lives easier. A participatory and inclusive approach has been adopted to ensure that vulnerable groups and their needs were also considered in the whole process.

2. Design and development

This included deciding how the tools would look like, how the information would be presented, and the content that needed to be prioritized. This has been a lengthy process since multiple iterations needed to be done until all involved actors agreed on the final product. From the WASH Alliance International experience, a good needs’ assessment will always facilitate the design process. Normally, fieldwork should take place during the iterations to assess whether the development process is on the right track. However, due to the restrictions imposed by the spread of Covid-19, it was not possible to conduct all field verifications during this phase.

3. Testing, promotion and scaling of the tools.  

This process has not taken place yet. Once the tools have been programmed and tested, the local partners of the WASH Alliance International in Nepal (CIUD and Lumanti) will identify and provide technical assistance to the institutional hosts who will monitor the implementation and adoption of the tools throughout the country.

The app, dashboard and the e-learning tool will be circulated among  different target groups. The tools will be provided in an open-source environment to enable further scaling and improvement (for example for the e-learning Moodle has been selected). The software will be technically maintained and updated for a period of 5 years by the contracted software company.

Lessons learned…so far.

Key lessons have been extracted from the discussions with involved stakeholders regarding their experiences in this and other related projects.

User feedback is extremely important to make a robust tool. The team needs to spend time in the field, talking to future users and understanding their main needs. What we think users want and what they actually need is often quite different.

Flexibility, communication and good planning helps to overcome difficulties in projects. For example, there was no possible to conduct fieldwork due  to Covid-19 restrictions. To overcome this issue SmartTech shared the tools with local field officers to do the verification and to obtain feedback about the usability and operability of the tools. These actions enhance communication among involved actors, helping to achieve goals in a more efficient way. As Aditi refers:

Following the planning schedule has been important since the beginning of the project, it helps me to track the deliverables and to see whether the goals have been achieved on time’.

Special thanks go to Aditi Goyal for her insights on the process of tool development. This document was developed by Practica Foundation as a member of the WASH Alliance International, partner of the WASH SDG Consortium. For more information please contact: info@practica.org; or visit http://www.practica.org. Photo credit: CIUD, Nepal.

External support programs to improve rural drinking water service sustainability: a systematic review

This is a guest blog by Meghan Miller. Meghan is completing her PhD in the Department of Environmental Sciences and Engineering at the University of North Carolina at Chapel Hill and has conducted both her masters and doctorate research through The Water Institute.

The Water Institute recently published a systematic review on external support programs (ESPs) that target rural, often community-managed water systems. ESPs are of vital importance to long-term functionality and sustainability of rural drinking water service, as all water systems fail eventually and rural water committees can lack the resources and/or capacity to rehabilitate the systems independently.

The purpose of the systematic review was to determine how ESPs in low-, medium- and high-income countries are described and measured. The aims of the analysis were to: create a typology of ESP activities based on ESPs for rural drinking water systems; identify barriers to ESP access and implementation; and determine how ESPs effect the sustainability of rural water systems.

So what do external support programs do?

The types of ESP activities described in the literature were: technical assistance, financial assistance, monitoring and regulation, communication and coordination, administrative assistance, capacity-building, and creation of policies and enforcement of regulations. Technical assistance, financial assistance, and capacity-building were described in the majority of publications included (66%, 57%, and 53% respectively).

Need for a typology of activities and precise language

The language used to describe ESPs was not consistent between publications about low-, middle-, and high-income countries. When ESP activities go underreported, knowledge transfer is limited and support for ESPs is reduced. Communication and coordination between ESP providers is further limited by inconsistent and imprecise language. We identified twenty-one terms that were used to describe ESPs. Some terms imply that support occurs at specific phases or with specific actors. Post-construction support, for example, assumes that projects have a single construction event. The terminology should reflect how and when support is provided. The better ESP terminology is defined, the better we can compare ESPs in different settings.

External support was the most commonly used term (27% of publications) and we propose using the term “external support programs” to describe the continued support for water systems. Based on our analysis we propose the following definition for ESPs: “the set of activities provided by NGOs, government, private and community-based entities to community-member managers to ensure continued safe operation of a drinking water system.”

What are the barriers to external support programs?

Barriers to ESPs were grouped into six categories: inadequate resources, inadequate ESP support, restrictive policies, lack of communication and coordination, little access to ESPs, and insufficient training of water system managers. The barriers to ESP varied by country income classification. Lack of communication within ESPs and between ESPs and stakeholders was most frequently mentioned in publications about high-income countries (36% of the publications); lack of communicate was often characterized by unclear roles and responsibilities, lack of trust between ESPs and stakeholders, inability to resolve disputes and misunderstanding of local context. Insufficient training of staff and insufficient resources for ESP wa identified as the most common barriers to ESP in publications about low and lower-income countries (57% and 45% of publications respectively).

Little comprehensive monitoring and assessment of ESPs

Twenty studies evaluated the effects of ESPs on water service levels. Most publications described ESP activities but did not undertake data collection to assess the programs. Without a rigorous assessment of ESPs, it is difficult to identify the most effective components of ESPs. Proper monitoring requires that stakeholders understand the activities and models implemented by ESP providers. Presence of ESPs and access to spare parts were used as the indicators of ESP activity by studies assessing the effect of ESPs on households and water systems. Better monitoring would include indicators that measure the six types of ESP activities, such as the frequency and attendance rate of water committee training events. Indicators should also measure the effectiveness of different providers – these outcome indicators should be developed according to the type and purpose of the ESP. Additional assessments of ESPs will help stakeholders identify which ESP activities and models promote sustainability. Support programs can then incorporate those that promote sustainability.

Majority of publications report on ESPs for point sources

The majority of publications addressed ESPs for point sources. The focus on point sources ignores water sources in community institutions and the implementation of more complex water systems. Community institutions, such as schools and health care facilities, have different water use characteristics and management structures than community drinking water systems and support to these community institutions will require adaptations to existing ESPs. Piped water systems, compared to point sources, are more complex, have larger one-time repair costs, typically require repairs more frequently, may require specialist technicians, and may require more expensive parts. Descriptions of ESPs in community settings and for more complex systems will improve knowledge about how ESPs for can be adapted to better serve community needs.

Further reading

The full article is available as:

Miller, M., Cronk, R., Klug, T., Kelly, E.R., Behnke, N., Bartram, J., 2019. External support programs to improve rural drinking water service sustainability: A systematic review. Sci. Total Environ. 670, 717–731. https://doi.org/10.1016/j.scitotenv.2019.03.069

Figure: Model of the variables that affect and are affected by external support programs based on data from quantitative and qualitative evaluations of external support programs and review of the literature. Plus signs represent a positive relationship and negative signs represent a negative relationship. The dashed lines represent relationships that have been identified in the literature, but were not assessed in the ESP evaluations. Credit: Authors.

 

 

 

 

Arsenic detected in rainwater harvesting tanks in Bolivia

This is a guest blog by Riley Mulhern, a PhD student at the University of North Carolina. If you are interested in issues related to water quality monitoring, you can join our online community here.  

In areas of water scarcity around the globe, made worse by climate change and pollution of groundwater, rainwater harvesting remains an important source of water supply for rural communities.

This is especially true in the Bolivian altiplano, where drought and mining work together to create pockets of severe water stress in what is generally considered a water-rich country. I lived among these communities high in the Andes for two years working with an organization called the Centro de Ecología y Pueblos Andinos (Center for Ecology and Andean Peoples, or CEPA). I assisted CEPA with a small-scale rainwater harvesting project for rural communities with high needs.

Over the course of the project, CEPA monitored the quality of harvested rainwater through consecutive wet and dry seasons. Surprisingly, we detected arsenic in every tank we monitored, 18 in total, whereas no microbial contamination was found.

This finding alerted CEPA to the risk of rainwater contamination in the region. Further testing identified roof dust that flushes into the tanks from the roof catchment as the principle source of arsenic in the rainwater. No arsenic was detected in raw rainwater before it interacted with the roof or tank. The source of the arsenic in the dust, whether naturally elevated in the altiplano soil or mobilized due to mining activity and released into the environment, is unknown, but widespread mining contamination in the area is likely a contributor.

Given these findings, the implementation of rainwater harvesting as an alternative drinking water supply by nonprofit groups and charitable organizations without adequate monitoring and evaluation of water quality is a potential concern. Since rainwater is presumed to be arsenic-free, rainwater harvesting has been promoted as an alternative drinking water source in other areas affected by arsenic contamination of groundwater as well, such as Mexico, parts of Central America, and Bangladesh. It is not safe to assume rainwater will be entirely arsenic-free, however. The levels found in collection tanks in Bolivia were double the WHO health guideline of 10 parts per billion.

As a result, arsenic and other metals should be included as standard monitoring parameters in rainwater projects. Groups implementing rainwater harvesting projects should seek additional partners with the tools and knowledge to perform thorough water quality testing.

This can be accomplished either through basic field tests, which provide semi-quantitative information for initial screening, or through laboratory analysis. Research done at North Carolina State University found that the standard field method—where inorganic arsenic in a water sample is reduced to arsine gas, which then reacts with a mercuric bromide strip to turn color—tends to underestimate the actual arsenic concentration as verified by ICP-MS (a sophisticated method that detects counts of atoms in a sample at specific molecular weights, allowing for a precise quantitative measurement). However, these low-cost and easily transportable kits still offer an accessible and simple screening tool for the presence of arsenic. The ITS Econoquick, for example, provides 300 tests with a 0.3 ppb detection limit for less than $200. For more precise measurements and longer term use, the Palintest Arsenator includes a standardized digital reading of the colorimetric output for $1,200. Both kits were field tested by CEPA and were easy to use for untrained operators.

In addition to greater testing, practitioners should also consider the required first flush volume for their project. First flush systems are essential for any rainwater harvesting scenario to mitigate both microbial and chemical risks. This is especially true when used as a drinking water source. One rule of thumb is that first flush systems should be able to capture at least 4 liters of water for every 10 square meters of roof. The tanks monitored in Bolivia did not meet this standard. Thus, the risk of arsenic contamination of rainwater and simple controls for system design and monitoring should also be communicated widely through knowledge platforms such as RWSN and the RAIN Foundation.

The results of this monitoring study were compiled by CEPA and a Belgian organization, the Comité Académico Técnico de Asesoramiento a Problemas Ambientales (CATAPA). The full results have been published and are accessible through the journal Science of the Total Environment. This work has also been featured previously by EngineeringforChange.org.

About the author

Riley Mulhern is a PhD student at the University of North Carolina Chapel Hill Gillings School of Global Public Health. He worked previously as a technical water quality adviser for a Bolivian environmental justice nonprofit addressing issues of mining contamination in rural indigenous communities in Oruro, Bolivia. He is from Denver, Colorado and received his B.S. in physics and geology from Wheaton College in Wheaton, IL and M.S. in Environmental Engineering from the University of Colorado Boulder. He has worked previously on water projects in Nicaragua and Haiti.

Photo: Rainwater tank monitored for the study being installed. Photo credit: Maggie Mulhern.

 

 

From Colombia to Kyrgyz Republic and Uganda: how we help countries adopt state-of-the art information systems for better management of rural water services

How many countries have you worked in where an up-to-date national information system for rural water services is used for decision-making?

SUSANNA SMETS (World Bank/RWSN Sustainable Services) & ANTONIO RODRÍGUEZ SERRANO (World Bank/RWSN Mapping & Monitoring (re-blogged from the World Bank)

How many countries have you worked in where an up-to-date national information system for rural water services is used for decision-making?

How many well-intended monitoring initiatives did you encounter which are no longer being used?

Your answers are likely to be “few” and “many”, as government-led information systems to support planning and decision making for fragmented rural water services are not easy to develop, institutionalize, and sustain.

It is widely recognized that information systems are a key building block to achieve sustainable rural services delivery – a top development priority given that 8 out 10 people without basic water services live in rural areas, leaving 628 million people unserved. The good news is that a customizable, tried and tested solution already exists, so that countries can leap-frog a cumbersome development process and – more importantly – go through a fast learning curve when adopting and institutionalizing the Rural Water and Sanitation information System or “SIASAR” as their national rural sector monitoring and evaluation (M&E) system.

Following the initiative of the governments of Honduras, Nicaragua, and Panama, 11 countries in Latin America and the Caribbean are using the innovative open-data platform “SIASAR”. Different actors are using this tool for decision making, strategic planning, rural water performance monitoring, and for taking appropriate actions to prevent services from deteriorating, ensuring that water keeps flowing from the taps and communities receive timely support. SIASAR has been supported by the World Bank since its inception in 2010. In particular, Global Water Security and Sanitation Partnership (GWSP), a multi-donor trust fund housed within the World Bank’s Water Global Practice, provides funding to SIASAR.

Following the initiative of the governments of Honduras, Nicaragua, and Panama, 11 countries in Latin America and the Caribbean are using the innovative open-data platform “SIASAR”.

With its adaptability and multi-language capability, SIASAR has now been introduced in the Kyrgyz Republic (in Russian and Kyrgyz languages), and a pilot has also been planned in Uganda. Within the context of the Kyrgyz Republic’s national rural water program, supported by the World Bank-supported Sustainable Rural Water Supply and Sanitation Project, SIASAR has now gradually been introduced as the sector’s M&E system, covering data on system status and service provider performance for almost a third of its 1800 remote and mountainous villages. This will help to target investments and achieve the Kyrgyz Government’s vision to reach universal access by 2026.

With support from GWSP and the World Bank’s office in Colombia, the South-South Knowledge Exchange Facility helped bring Kyrgyz and Ugandan delegations together in Colombia. This knowledge exchange allowed them to receive peer-to-peer advice on how to introduce, roll out, and use SIASAR, and to learn about effective policy instruments, regulations, and institutional arrangements for sustainable rural water supply and sanitation service provision.

With support from GWSP and the World Bank’s office in Columbia, the South-South Knowledge Exchange Facility helped bring Kyrgyz and Ugandan delegations together in Colombia.

Specifically, the delegations learned about Colombia’s differentiated policy and regulatory instruments for rural areas, including tariff policies, water quality and environmental regulations, technical standards for water supply and sanitation, financing modalities for investments, and of course the SIASAR information systems for evidence-based decision making. Through field visits, the responsibilities of local and regional governments in rural service delivery in Colombia were better understood. The three-way translation between Spanish, English, and Russian put in place and the excellent collaborative spirit by all parties helped to overcome the communication challenge. These delegates took away important lessons on the adaptation process for SIASAR, such as:

  • SIASAR implementation and scale-up requires dedicated human and financial resources at the national and regional levels, including both sectoral and IT experts.
  • A clear roadmap for SIASAR adoption is necessary, bringing in multiple partners to support implementation. Anchoring in national legislation and fostering linkages with other national statistical information systems is critical.
  • SIASAR can cater analysis to the need of different actors and increases transparency and accountability of service provision.
  • SIASAR has helped to inform and influence investment programs to close the urban-rural service gap, accompanied by a range of measures to support rural service providers.

Depending on where they were in the adoption of SIASAR, the Kyrgyz delegation was keen to grasp the process of institutionalization, while the Ugandans were exposed to the range of capabilities and practical first steps that have now led to a first pilot, supported by the Uganda Integrated Water Management and Development Project (IWMDP).  

Seeing solutions in action can be a great motivation. The knowledge exchange with Colombiastimulated learning and encouraged officials from Kyrgyz and Uganda to try and adopt solutions to their own circumstances. A guide is now available that can help any country go through the process and prepare for the steps of adopting SIASAR.

SIASAR has proven to be an effective tool for improving the monitoring, evaluation, planning, and coordination of water supply and sanitation services in participating countries in Latin America and beyond. Through knowledge exchange activities like this and future GWSP technical assistance, we hope to support more countries in adopting the system and joining the initiative, while we commit to continuous improvement of the capabilities of the system. 

Just how much do countries rely on groundwater point sources for their drinking water?

Preliminary analysis of census and national survey data from the 2019 Joint Monitoring Programme, by Dr Kerstin Danert

An important issue for those of us that think a lot about groundwater is the extent that various countries rely on it for their drinking water.

The data presented in the table below has been prepared from the 2019 data published by the Joint Monitoring Programme (JMP) of the World Health Organisation (WHO) and UNICEF (see https://washdata.org/data). Each country has an associated Country File (an excel spreadsheet) with collated data on Water, Sanitation and Hygiene use. This data is gathered from national censuses as well as household surveys such as the Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS) and many others. The country files given excel spreadsheets on the JMP website (not to mention the underlying surveys) contain a wealth of data!

The table below shows the percentage of the population that rely on groundwater point sources as their main source of drinking water for every country and territory for the most recent year for which census or survey data is available. The data is presented for urban, rural and total populations.  Groundwater point sources include protected and unprotected wells and springs, as well as tube wells and boreholes.  Countries may have slightly different nomenclature for the above terms, but these are harmonised in the country tables produced by the JMP.

It is important to note that the data only includes point sources.  Water that is bought from vendors, sold in bottles/sachets or transmitted in pipes may also originate from groundwater, but this information is not generally collated by the censuses or surveys and thus cannot be reflected.  Consequently, the actual dependency of a particular on groundwater for drinking may be considerably higher. In addition, national governments may also make calculations based on the infrastructure available and assumed number of users per source. Due to the different methods of data collection and calculation, these estimates may differ from that collected by the household survey or census.

Please note that the analysis below has not been peer-reviewed, and so if you are intending to use the data, please do check in the respective JMP country file.  You can access Country Files on: https://washdata.org/data. Click on map to select country, download “Country file” and open the “Water Data” tab. In case you spot any mistakes in the table below, please respond in the comments in the blog below or contact the author directly, via rwsn@skat.ch.

Table 1 Groundwater point source as main drinking water source (% of the population classified as urban, rural and total)

Urban Rural Total
Country Census/ Survey Year Ground-water point source as main drinking water source (% of the urban pop.) Census/ Survey Year Ground-water point source as main drinking water source (% of the rural pop.) Census/ Survey Year Ground-water point source as main drinking water source (% of the total pop.)
Afghanistan 2017 57.3% 2017 71.5% 2017 68.1%
Albania 2012 6.4% 2012 14.7% 2012 10.2%
Algeria 2013 6.6% 2013 19.6% 2013 11.3%
American Samoa 2010 0.5%
Andorra 2005 6.6%
Angola 2016 17.7% 2016 43.0% 2016 26.8%
Anguilla 2009 0.7% 2009 0.7%
Antigua and Barbuda 2011 0.4%
Argentina 2013 9.1% 2010 37.7% 2010 15.0%
Armenia 2016 0.1% 2016 2.6% 2016 1.1%
Aruba 2010 1.3%
Australia 2013 0.1% 2013 1.1% 2013 0.5%
Azerbaijan 2017 0.1% 2017 12.1% 2017 5.4%
Bahamas 2010 2.9%
Bahrain 1995 1.4%
Bangladesh 2016 66.4% 2016 94.7% 2016 84.9%
Barbados 2010 0.1% 2012 0.1%
Belarus 2012 2.7% 2012 32.9% 2012 11.1%
Belize 2016 0.3% 2016 4.1% 2016 2.5%
Benin 2014 39.4% 2014 56.8% 2014 48.9%
Bhutan 2017 0.3% 2017 0.6% 2017 0.5%
Bolivia (Plurinational State of) 2017 5.0% 2017 42.2% 2017 16.5%
Bosnia and Herzegovina 2012 3.6% 2012 11.4% 2012 8.9%
Botswana 2017 0.1% 2017 14.9% 2017 5.3%
Brazil 2017 0.4% 2017 8.4% 2017 1.6%
British Virgin Islands 2010 1.9%
Brunei Darussalam 2011 0.1% 2011 0.1% 2011 0.1%
Bulgaria 2001 0.4% 2001 2.7% 2001 1.1%
Burkina Faso 2017 17.1% 2017 85.6% 2017 72.9%
Burundi 2017 8.6% 2017 68.1% 2017 61.5%
Cabo Verde 2007 0.1% 2012 15.1% 2012 5.1%
Cambodia 2016 13.5% 2016 47.2% 2016 40.2%
Cameroon 2014 35.5% 2014 74.1% 2017 50.0%
Canada 2011 0.1% 2011 0.7% 2011 0.3%
Caribbean Netherlands 2001 27.3%
Cayman Islands 2010 4.9% 0.0% 2010 4.9%
Central African Republic 2010 49.1% 2010 92.1% 2010 75.4%
Chad 2015 48.0% 2015 82.4% 2015 74.6%
Chile 2017 0.6% 2017 4.0% 2017 2.4%
China 2013 7.4% 2013 43.1% 2016 22.4%
Colombia 2018 0.4% 2018 13.7% 2018 3.3%
Comoros 2012 5.1% 2012 21.3% 2012 16.2%
Congo 2015 24.9% 2015 65.7% 2015 38.3%
Cook Islands 2011 0.0%
Costa Rica 2018 0.0% 2018 0.5% 2018 0.2%
Côte d’Ivoire 2017 33.9% 2017 71.0% 2017 49.5%
Croatia 2003 3.3% 2003 18.0% 2003 20.0%
Cuba 2011 13.5% 2014 41.9% 2011 18.2%
Curaçao 2011 0.9%
Czechia 2003 1.5% 2003 7.1%
Democratic People’s Republic of Korea 2017 17.1% 2017 58.1% 2017 33.1%
Democratic Republic of the Congo 2014 33.0% 2014 79.4% 2014 63.5%
Djibouti 2017 0.6% 2017 55.5% 2017 10.9%
Dominica 2001 0.6% 2001 6.3% 2009 0.3%
Dominican Republic 2016 0.1% 2016 2.3% 2016 0.7%
Ecuador 2017 1.1% 2017 17.1% 2017 6.1%
Egypt 2017 0.4% 2017 2.1% 2017 1.4%
El Salvador 2017 3.0% 2017 12.3% 2017 6.6%
Equatorial Guinea 2011 44.7% 2011 51.9% 2011 48.4%
Eritrea 2010 3.4% 2010 36.0% 2010 24.6%
Estonia 2010 1.7% 2010 18.8% 2010 6.7%
Eswatini 2014 3.7% 2014 31.5% 2014 24.0%
Ethiopia 2017 5.1% 2017 62.3% 2017 52.0%
Falkland Islands (Malvinas) 2016 43.7%
Fiji 2014 1.1% 2014 13.6% 2014 7.2%
Finland 1999 1.0% 2005 5.0% 2005 1.0%
French Guiana 1999 5.0% 1999 6.0% 2015 13.5%
Gabon 2013 3.3% 2013 37.8% 2013 8.2%
Gambia 2013 14.4% 2013 60.0% 2013 32.6%
Georgia 2017 4.9% 2017 46.9% 2017 22.2%
Germany 2007 0.8% 2007 0.8% 2007 0.0%
Ghana 2017 11.3% 2017 56.7% 2017 36.0%
Greece 2001 0.2% 2001 3.8%
Grenada 1999 4.0% 1999 18.0%
Guadeloupe 2006 0.8% 2006 0.3% 2006 0.8%
Guam 2010 0.1%
Guatemala 2015 5.0% 2015 19.6% 2015 13.4%
Guinea 2016 32.8% 2016 75.3% 2016 59.0%
Guinea-Bissau 2014 41.0% 2014 78.0% 2014 61.7%
Guyana 2014 1.3% 2014 5.5% 2014 4.4%
Haiti 2017 8.1% 2017 56.5% 2017 37.5%
Honduras 2017 2.0% 2017 4.2% 2017 3.0%
Hungary 1990 5.0% 1990 28.9%
India 2016 23.8% 2016 63.7% 2016 50.5%
Indonesia 2018 35.2% 2018 66.9% 2018 49.6%
Iran (Islamic Republic of) 2015 1.8% 2015 4.6% 2015 0.8%
Iraq 2018 0.5% 2018 4.6% 2018 1.8%
Ireland 2006 0.0% 2006 0.5%
Italy 2001 3.9%
Jamaica 2014 0.0% 2014 1.2% 2014 0.6%
Jordan 2016 0.3% 2016 0.7% 2016 0.4%
Kazakhstan 2015 3.2% 2015 21.0% 2015 11.5%
Kenya 2017 21.2% 2017 54.1% 2017 46.2%
Kiribati 2014 0.0% 2014 0.0% 2014 0.0%
Kyrgyzstan 2014 1.1% 2014 11.3% 2014 8.1%
Lao People’s Democratic Republic 2017 9.0% 2017 46.0% 2017 34.7%
Latvia 2003 2.4% 2003 12.5%
Lebanon 2016 10.9%
Lesotho 2015 5.5% 2015 27.8% 2015 21.4%
Liberia 2016 58.7% 2016 74.7% 2016 65.3%
Libya 1995 35.8% 1995 26.9% 2014 19.1%
Madagascar 2016 24.5% 2016 61.6% 2016 57.6%
Malawi 2017 16.3% 2017 86.0% 2017 73.8%
Malaysia 2003 0.8% 2003 6.7%
Maldives 2014 0.1% 2014 0.2% 2017 0.5%
Mali 2018 19.5% 2018 72.3% 2018 56.2%
Marshall Islands 2017 0.2% 2017 2.5% 2017 0.6%
Martinique 1999 0.5% 2015 0.4%
Mauritania 2015 6.5% 2015 49.4% 2015 29.1%
Mayotte 0.0% 2013 2.5%
Mexico 2017 0.8% 2017 9.5% 2017 2.8%
Micronesia (Federated States of) 2010 3.6% 2010 10.7% 2010 9.1%
Mongolia 2016 12.8% 2016 52.7% 2016 25.8%
Montenegro 2013 5.1% 2013 29.2% 2013 14.1%
Montserrat 1998 2.0% 1998 100.0% 2001 0.1%
Morocco 2012 1.0% 2012 27.2% 2012 10.2%
Mozambique 2015 21.4% 2015 62.5% 2015 49.6%
Myanmar 2016 34.3% 2016 74.8% 2016 64.0%
Namibia 2016 0.6% 2016 23.4% 2016 11.8%
Nauru 2011 1.6% 2011 0.0% 2011 1.6%
Nepal 2016 41.8% 2016 46.8% 2016 44.4%
New Caledonia 2014 3.1%
Nicaragua 2014 4.4% 2014 59.9% 2016 21.4%
Niger 2017 33.9% 2017 71.0% 2017 49.5%
Nigeria 2018 45.3% 2018 73.1% 2018 60.0%
Niue 1999 20.0% 2010 0.0%
North Macedonia 2011 1.5% 2011 15.1% 2011 7.7%
Northern Mariana Islands 2000 1.3% 0.0% 2010 1.1%
Oman 2014 5.1% 2014 10.0% 2014 6.4%
Pakistan 2016 30.4% 2016 44.0% 2016 39.1%
Panama 2015 0.7% 2015 14.6% 2017 0.0%
Papua New Guinea 2017 2.8% 2017 7.5% 2017 7.1%
Paraguay 2017 2.1% 2017 9.2% 2017 4.8%
Peru 2017 1.5% 2017 11.1% 2017 3.8%
Philippines 2017 8.4% 2017 37.6% 2017 23.9%
Portugal 2001 0.1% 2001 0.7%
Puerto Rico 1995 1.8%
Republic of Korea 2015 1.0%
Republic of Moldova 2012 16.9% 2012 65.1% 2012 47.1%
Réunion 2015 0.2%
Romania 1994 11.3% 1994 81.0%
Russian Federation 2009 3.4% 2009 19.5% 2009 8.6%
Rwanda 2017 17.2% 2017 58.4% 2017 50.4%
Saint Kitts and Nevis 1999 27.0% 1999 27.0% 2007 0.3%
Saint Lucia 2012 0.5% 2012 2.0% 2012 1.6%
Saint Vincent and the Grenadines 1999 20.0% 2012 0.1%
Samoa 2016 2.6% 2016 5.6% 2016 5.0%
Sao Tome and Principe 2010 4.5% 2010 11.7% 2010 6.9%
Saudi Arabia 2017 0.2%
Senegal 2017 7.2% 2017 35.0% 2017 22.5%
Serbia 2014 2.4% 2014 11.7% 2014 6.2%
Sierra Leone 2017 54.7% 2017 68.9% 2017 62.6%
Sint Maarten (Dutch part) 2011 7.4%
Slovakia 2003 2.3% 2003 2.3% 2011 13.1%
Solomon Islands 2015 8.6% 2016 27.6% 2015 17.5%
Somalia 2017 9.5% 2017 60.5% 2017 34.1%
South Africa 2017 0.5% 2017 10.1% 2017 3.8%
South Sudan 2017 66.5% 2017 80.1% 2017 77.3%
Spain 2003 0.6% 2003 0.3%
Sri Lanka 2016 17.3% 2016 51.0% 2016 45.3%
Sudan 2014 2.2% 2014 13.2% 2014 9.8%
Suriname 2017 3.1% 2017 5.4% 2017 3.8%
Syrian Arab Republic 2018 4.2% 2018 11.6% 2018 8.4%
Tajikistan 2017 5.2% 2017 18.7% 2017 15.4%
Thailand 2016 1.8% 2016 6.2% 2016 4.2%
Timor-Leste 2016 20.0% 2016 33.6% 2016 29.9%
Togo 2017 36.6% 2017 61.2% 2017 51.8%
Tonga 1999 28.0% 1999 24.0% 1996 1.7%
Trinidad and Tobago 2011 0.9% 2011 1.0% 2011 0.9%
Tunisia 2015 0.5% 2015 10.8% 2015 3.7%
Turkey 2013 5.0% 2013 40.0% 2013 13.0%
Turkmenistan 2016 4.4% 2016 34.3% 2016 22.6%
Turks and Caicos Islands 1999 22.0% 1999 40.0% 2012 1.7%
Tuvalu 2007 1.7% 2007 0.5% 2007 1.1%
Uganda 2017 35.8% 2017 79.6% 2017 71.9%
Ukraine 2018 11.5% 2018 61.2% 2018 27.8%
United Arab Emirates 2003 0.2% 2018 0.1%
United Republic of Tanzania 2017 19.4% 2017 50.5% 2017 41.2%
United States of America 2015 3.0% 2015 45.2% 2015 11.1%
Uruguay 2017 0.0% 2017 3.1% 2017 0.2%
Uzbekistan 2015 6.9% 2015 22.7% 2015 14.2%
Vanuatu 2016 1.6% 2016 4.8% 2016 4.0%
Venezuela (Bolivarian Republic of) 2011 4.3% 2011 25.6% 2011 6.8%
Viet Nam 2016 19.5% 2016 57.2% 2016 45.2%
West Bank and Gaza Strip 2017 1.2% 2017 3.2% 2017 1.5%
Yemen 2013 2.3% 2013 43.1% 2013 31.6%
Zambia 2015 26.7% 2015 76.8% 2015 55.8%
Zimbabwe 2017 11.1% 2017 77.5% 2017 57.0%

Photo:  Groundwater provides over 80% of the rural population with its main source of drinking water in South Sudan. Photo taken in 2014 in Northern Bahr el Ghazal by Kerstin Danert.

 

 

 

New JMP report offers fresh insights into rural water progress and challenges

The new JMP report is out with WASH data up to 2017! This is an initial look at some key points relating to rural water supply

The WHO/UNICEF Joint Monitoring Programme (JMP) is one of the central data and analysis resources for the WASH sector and each new report and data update is generally grabbed eagerly by WASH data geeks, like me.

This being RWSN, I’m specifically interested in rural water supply and what I present below is a hasty digest of some key facts and figures in the latest 2019 JMP report specifically relating to rural drinking water access.

I’m sure other WASH bloggers will also add the analysis, but I found the stuff on inequalities very interesting and useful. Some things that jumped out at me include:

  • What can we learn from Paraguay, Morocco and other countries that have made good progress?
  • Rural water supply challenges are not just about Sub-Saharan Africa: Papua New Guinea, the Solomon Islands, Fiji, Jamaica, Nicaragua and others are going backwards; and in terms of absolute numbers of people, China, India, Indonesia and Pakistan still have millions of rural people
  • Lower wealth quintiles often get left behind, but not always.
  • The new 3 elements of “Safely Managed” water are interesting and highlight an urgent need for systematic water quality monitoring – which a new RWSN Topic this year, as part of the Mapping & Monitoring Theme, thanks to our friends at the University of North Carolina.

Global Headline Facts & Figures

Here are some nuggets that will doubtless be seen in powerpoint presentations, funding proposals and journal papers over the coming year:

  • “2000-2017: Rural coverage of safely managed services increased from 39% to 53%. The gap between urban and rural areas decreased from 47 to 32 percentage points.”
  • “In 2017: 5.3 billion people used safely managed services. An additional 1.4 billion used at least basic services. 206 million people used limited services, 435 million used unimproved sources, and 144 million still used surface water.”
  • “46 out of 132 countries are on track to achieve ‘nearly universal’ basic water services by 2030, but rural areas and the poorest wealth quintiles have furthest to go”
  • “The greatest increase was recorded in Sub-Saharan Africa, where a quarter of the current population has gained access to at least basic drinking water since 2000”
  • In 2017: Eight out of ten people still lacking even basic services lived in rural areas. Nearly half lived in Least Developed Countries
  • “207 million people still used sources where water collection exceeded 30 minutes. Two thirds (135 million) of these people lived in countries in Sub-Saharan Africa but six out of eight SDG regions contained at least one country where >10% of the population used limited water services in 2017. The burden of water collection falls disproportionately on women.”

The report also reminds us that WASH is not just about SDG6, there are direct and indirect references in:

  • SDG 1.4 (No Poverty) its indicator 1.4.1 “Proportion of population living in households with access to basic services (including access to basic drinking water, basic sanitation and basic handwashing facilities)”
  • SDG 4.a (Education) and its indicator: 4.a.1 Proportion of schools with access to… (e) basic drinking water, (f) single-sex basic sanitation facilities, and (g) basic handwashing facilities
  • SDG 3.8 (Health) and its indicator on proportion of health care facilities with basic WASH services.

Since the emergence of SDG6.1 there has been a question about what “Safely Managed” water means. Well now there is some data available of the three elements chosen by the JMP team:

  • “Accessible on premises”
  • “Available when needed”
  • “Free from contamination”

However, there is only data for 14 countries for all three of these, but from those: “Between 2000 and 2017, water quality in rural areas improved from 42% to 53% free from contamination”

Regional/Country Progress and inequalities

Without doubt, the rural water supply star country is Paraguay: “Paraguay increased rural coverage of basic water from 53% to 99% and reduced the gap between richest and poorest by over 40 percentage points.”

Elsewhere:

  • “In almost all countries, service levels are higher in urban areas than in rural areas, but different patterns of inequality are observed.”
  • “In Latin America and the Caribbean, 12% of the rural population lacked basic water services in 2017, compared to 29% in 2000”
  • “In Haiti rural basic water coverage has increased among the richest but decreased among the poorest thereby widening the gap between them”
  • “In Nicaragua, rural basic water coverage has decreased among both groups.”
click to expand

Country progress to achieving Basic Rural Water Coverage by 2030 (figure above):

  • 16 countries on track, including: Morocco, Tajikistan, Lao PDR, Myanmar, Azerbaijan, Iraq, El Salvador, Kazakhstan, India, Vietnam, Tunisia, Brazil, Lithuania, Suriname, Panama. The most progress is being made by Morocco (+2.5%/year)
  • 61 countries are making progress, but too slowly.  The best progress is being made by Afghanistan and Mozambique (+2.1%/year)
  • 17 countries are going backwards, including: Iran, Fiji, Malaysia, North Korea, Serbia, Jamaica, Comoros, Gambia, Lesotho, Nicaragua, Guinea, Zimbabwe, Djibouti, Burkina Faso, Chad, Equatorial Guinea, Solomon Island. The biggest declines have been in Burkina Faso, Comoros and the Solomon Islands (-0.9%/year).

Which countries have the biggest rural water supply challenges?

The JMP data can examine this question in different ways – and a few new ones too. This is a quick-and-dirty dive into the data to look at which countries are struggling and should be given priority:

A column on water quality/contamination criteria is not included because the aggregated data for rural water is not available – and in many cases probably doesn’t exist.

These are just a few highlights, please take the time to read the report and explore the data portal.

Comprendre l’invisible: les efforts de l’Ouganda pour améliorer l’accès aux données détaillées sur les eaux souterraines

Il s’agit du second d’une série de quatre blogs intitulée ‘Le forage professionnel de puits d’eau: Apprendre de l’Ouganda” de Elisabeth Liddle et d’un webinaire en 2019 sur le forage de puits professionnel. Cette série s’appuie sur les recherches menées en Ouganda par Liddle et Fenner (2018). Nous vous invitons à nous faire part de vos commentaires en réponse à ce blog ci-dessous. [Note : Le blog original a été révisé le 3 avril 2019 pour corriger une représentation inexacte de la situation].

Si l’accès à des sources d’eau améliorées a augmenté de manière progressive dans l’ensemble de l’Afrique subsaharienne rurale, plusieurs études ont soulevé des problèmes concernant la capacité de ces sources à fournir des quantités d’eau sûres et adéquates à long terme (Foster et al., 2018 ; Kebede et al., 2017 ; Owor et al., 2017 ; Adank et al., 2014). La conception et l’emplacement des forages sont essentiels à ce que le point d’eau continue à fournir des quantités d’eau sûres et adéquates. L’accès à des informations détaillées et précises sur les eaux souterraines peut grandement faciliter le choix du site et la conception des forages (UNICEF/Skat, 2016 ; Carter et al., 2014).

La Fondation Skat et l’UNICEF ont été les principaux défenseurs d’un accès plus répandu à des données détaillées sur les eaux souterraines, y compris la récente note d’orientation qui souligne que “l’information sur les eaux souterraines” est essentielle à l’amélioration de la qualité de la mise en œuvre des forages dans les pays à revenus faible et intermédiaire (voir Figure 1 ; UNICEF/Skat, 2016). Dans ce blog, je donne un aperçu de la manière dont l’Ouganda a cherché à améliorer l’accès aux données sur les eaux souterraines ces dernières années.

Screen Shot 2019-04-01 at 4.58.03 PMScreen Shot 2019-04-01 at 4.57.43 PM

Fig. 1: Six domaines d’engagement pour l’exploitation professionnelle des eaux souterraines (Skat/ UNICEF, 2018)

La cartographie des ressources en eaux souterraines en Ouganda

Des mesures importantes ont été prises ces dernières années pour améliorer l’accès aux données détaillées sur les eaux souterraines en Ouganda. La plupart de ces activités ont débuté en 2000 lorsque la Direction de la gestion des ressources en eau du Ministère de l’eau et de l’environnement a lancé un projet de cartographie des eaux souterraines à l’échelle nationale. À l’aide de données tirées des rapports d’achèvement des forages que les entrepreneurs de forage doivent soumettre chaque trimestre, la Direction de la gestion des ressources en eau a élaboré une série de cartes pour chaque district. Il s’agit notamment des cartes suivantes :

  1. Carte de localisation des sources d’eau, avec carte géologique à l’appui.
  2. Carte des technologies recommandées par source d’eau (la recommandation de la technologie se base sur la profondeur de l’impact de l’aquifère principal et les données sur le rendement).
  3. Carte des conditions hydrogéologiques – elle comprend 4 sous-cartes : Profondeur présumée du premier impact avec l’eau[1],  la profondeur présumée de l’impact avec l’aquifère principal[2], l’épaisseur présumée des morts-terrains[3], etla profondeur statique présumée du niveau d’eau[4].
  4. Carte de la qualité des eaux souterraines : celle-ci met en évidence les zones où la qualité de l’eau pourrait poser problème.
  5. Potentiel des eaux souterraines – Carte du taux de réussite du forage : combine le taux de réussite prévu du rendement [5] et les conditions prévues de la qualité de l’eau.

Tindimugaya (2004) donne plus de détails sur ces cartes, ainsi que les façons dont elles peuvent faciliter le processus de mise en œuvre. Un exemple de cartes pour le district de Kibaale est disponible sur le site Web du Ministère de l’Eau et de l’Environnement.

Ce travail de cartographie est en cours, cependant, en mai 2017, la Direction de la gestion des ressources en eau avait cartographié 85% des districts de l’Ouganda. L’ampleur de ces cartes et le niveau de détail qu’elles contiennent sont remarquables. Ces cartes ont rendu service aux collectivités locales de district, aux organisations non gouvernementales et  autres responsables de l’implantation et de la construction des points d’eau.

Des défis persistents

Bien que l’Ouganda ait fait des progrès remarquables au cours des dernières années grâce à ses efforts de cartographie des eaux souterraines, plusieurs défis persistent (Liddle et Fenner, 2018), liés pour la plupart à l’exactitude des données. Lors d’entretiens avec les personnes interrogées en Ouganda dans le cadre de nos recherches, on nous a signalé que dans certains cas (mais pas tous), des données inexactes ont été fournies. Lorsqu’on examine les raisons pour lesquelles des données inexactes sont parfois fournies aux autorités, deux poins clés ont été relevés :

  1. Souvent, il n’y a pas de consultant qualifié sur place à temps plein pour la supervision du forage. Bien qu’il incombe à l’entrepreneur de forage de faire consigner le journal de forage par un membre du personnel, un superviseur indépendant devrait également tenir un journal et vérifier l’exactitude du journal du foreur avant de le soumettre à la Direction de la gestion des ressources en eau. Cependant, sans supervision à temps plein, cela n’est pas possible. De plus, même avec une supervision à temps plein, si le superviseur n’est pas un hydrogéologue, il est peu probable qu’il tiendra des registres précis et détaillés.
  2. Les conditions de paiement forfaitaires “pas d’eau, pas de paiement”, selon lesquelles les foreurs ougandais sont souvent payés (voir le blog “Contrats clés en main pour l’implantation et le forage des puits d’eau“). Ces modalités de paiement exigent des foreurs qu’ils prouvent qu’ils aient foré avec succès un point d’eau pour être payés; par conséquent, certains foreurs auraient exagéré le rendement d’un forage donné afin d’être payés. Les données faussées ainsi obtenues sont préoccupantes, car non seulement ces forages auront du mal à fournir des quantités adéquates d’eau après construction, mais les données liées à leur haut rendement sont ensuite saisies dans la base de données des journaux de forage et utilisées pour produire les cartes hydrogéologiques. Il est essentiel d’améliorer la qualité de la supervision des forages et de veiller à ce que les données ne soient pas faussées de cette façon si l’on veut que les cartes de la Direction de la gestion des ressources en eau soient plus précises à l’avenir.

Dans l’ensemble, l’Ouganda a fait des progrès remarquables au cours des deux dernières décennies en augmentant le niveau d’information sur les eaux souterraines disponible dans le pays. Il y a très peu d’exemples sur le continent africain comparables à ce que l’Ouganda a accompli ! Comme indiqué plus haut, les cartes qui en résultent représentent un grand avantage pour les autorités locales de district, les organisations non gouvernementales et les autres responsables de l’implantation et de la construction des points d’eau.

Il est essentiel pour l’Ouganda d’améliorer la précision des rapports d’achèvement des forages. En outre, d’autres pays pourront prendre conscience de ces défis lorsqu’ils entreprennent leurs propres exercices de cartographie et veiller à ce que les mesures nécessaires soient en place pour prévenir ces problèmes dans leur contexte.

Qu’en pensez-vous?

 Alors, qu’en pensez-vous? Avez-vous de l’expérience en matière de collecte ou gestion de données sur les eaux souterraines? Cela devrait-il être entrepris dans votre pays? Vous pouvez répondre ci-dessous en postant un commentaire, ou vous pouvez participer au webinaire en direct le 14 mai (inscriptions ici)

[1] Profondeur présumée du premier impact avec l’eau : la profondeur à laquelle un foreur est susceptible de rencontrer des eaux souterraines pour la première fois. Dans la plupart des cas, le foreur devra poursuivre le forage au-delà de ce point pour que le trou de forage puisse fournir suffisamment d’eau aux utilisateurs.

[2] Profondeur présumée de l’impact avec l’aquifère principal : la profondeur à laquelle un foreur est susceptible de trouver l’aquifère principal qui sera en mesure de fournir des quantités suffisantes d’eau aux utilisateuCarte de la qualité des eaux souterraines : celle-ci met en évidence les zones où la qualité de l’eau pourrait poser problème.

[3] Les morts-terrains désignent les matériaux non consolidés qui recouvrent le substratum rocheux. La carte de l’épaisseur prévue des morts-terrains met en évidence la profondeur prévue des matériaux non consolidé dans l’ensemble de l’Ouganda.

[4] Profondeur statique présumée du niveau d’eau = la profondeur d’eau souterraine attendue sans perturbation de pompage.

[5]   Le ” taux de réussite du rendement ” fait référence à un forage capable de supporter un débit de pompage de 500 litres/heure. Si un forage peut maintenir ce taux de pompage, il est considéré comme une réussite en ce qui concerne le rendement.

Références

Adank, M., Kumasi, T.C., Chimbar, T.L., Atengdem, J., Agbemor, B.D., Dickinson, N., and Abbey, E. (2014). The state of handpump water services in Ghana: Findings from three districts, 37th WEDC International Conference, Hanoi, Vietnam, 2014, Available from https://wedc-knowledge.lboro.ac.uk/resources/conference/37/Adank-1976.pdf

Carter, R., Chilton, J., Danert, K. & Olschewski, A. (2014) Siting of Drilled Water Wells – A Guide for Project Managers. RWSN Publication 2014-11 , RWSN , St Gallen, Switzerland, Available from http://www.rural-water-supply.net/en/resources/details/187

Foster, T., Willetts, J., Lane, M. Thomson, P. Katuva, J., and Hope, R. (2018). Risk factors associated with rural water supply failure: A 30-year retrospective study of handpumps on the south coast of Kenya. Science of the Total Environment,, 626, 156-164, Available from https://www.sciencedirect.com/science/article/pii/S0048969717337324

Kebede, S., MacDonald, A.M., Bonsor, H.C, Dessie, N., Yehualaeshet, T., Wolde, G., Wilson, P., Whaley, L., and Lark, R.M. (2017). UPGro Hidden Crisis Research Consortium: unravelling past failures for future success in Rural Water Supply. Survey 1 Results, Country Report Ethiopia. Nottingham, UK: BGS (OR/17/024), Available from https://nora.nerc.ac.uk/id/eprint/516998/

Liddle, E.S. and Fenner, R.A. (2018). Review of handpump-borehole implementation in Uganda. Nottingham, UK: BGS (OR/18/002), Available from https://nora.nerc.ac.uk/id/eprint/520591/

Owor, M., MacDonald, A.M., Bonsor, H.C., Okullo, J., Katusiime, F., Alupo, G., Berochan, G., Tumusiime, C., Lapworth, D., Whaley, L., and Lark, R.M. (2017). UPGro Hidden Crisis Research Consortium. Survey 1 Country Report, Uganda. Nottingham, UK: BGS (OR/17/029), Available from https://nora.nerc.ac.uk/id/eprint/518403/

Tindimugaya, C. (2004). Groundwater mapping and its implications for rural water supply coverage in Uganda. 30th WEDC International Conference, Vientiane, Lao PDR, 2004. Available from https://wedc-knowledge.lboro.ac.uk/resources/conference/30/Tindimugaya.pdf

UNICEF/Skat (2016). Professional water well drilling: A UNICEF guidance note. St Gallen, Switzerland: Skat and UNICEF. Available from http://www.rural-water-supply.net/en/resources/details/775

Remerciements

Ce travail fait partie du projet Hidden Crisis du programme de recherche UPGro – cofinancé par le NERC, le DFID et l’ESRC.

Le travail de terrain entrepris pour ce rapport fait partie de la recherche doctorale des auteurs à l’Université de Cambridge, sous la supervision du Professeur Richard Fenner. Ce travail sur le terrain a été financé par le Ryoichi Sasakawa Young Leaders Fellowship Fund et UPGro : Hidden Crisis.

Merci à ceux d’entre vous de l’Université de Makerere et de WaterAid Ouganda qui m’ont apporté un soutien logistique, y compris sur le terrain, pendant que je menais les entretiens pour ce rapport (en particulier le Dr Michael Owor, Felece Katusiime et Joseph Okullo de l’Université Makerere et Gloria Berochan de WaterAid Uganda). Merci également à tous les répondants d’avoir été enthousiastes et disposés à participer à cette recherche.

Photo: “Carte des technologies recommandées par source d’eau souterraine dans la division Eau du bureau du district de Kayunga” (Source: Elisabeth Liddle).