Floods with silver linings: Redefining how aquifers replenish in dryland Africa

This blog by Sean Furey was originally published in GeoDrilling International and is available here.

Drilling for water is only useful if there is good water to be had now and into the future. Since 2013, researchers in the UK-funded programme Unlocking the Potential of Groundwater for the Poor, have been working all over Africa to understand better the continents aquifers and how their hidden wealth can be used to benefit everyone. Now after years of patient work, exciting results and resources are emerging.

One is that the Africa Groundwater Atlas, curated by the British Geological Survey, now has downloadable GIS maps for 38 countries. They are quite large scale, so not detailed enough for individual borehole siting, but a good starting point for identifying where major aquifers are. This supports the wealth of other useful information, in English and French, on the soils, climate and groundwater use in all 52 of Africa’s countries.

Meanwhile a major finding published in the leading science journal Nature in August overturns our understanding of how aquifers are recharged in Africa’s drylands. In humid areas of the continent, like the tropical Congo Basin, there is a direct relationship between the rain that falls on an area of rainforest and what percolates down into the soil and rock. Not so in the Savannah’s and scrub land of the Sahel, the Horn of Africa and Savannah’s of East and Southern Africa.

Analysis of the precious few long groundwater records, combined with local studies in Niger, Ethiopia and Tanzania have shown that here rainwater is only able to percolate into the aquifer in well-defined locations, like ponds and riverbeds, and only after very intense storms. As a hydrogeologist that used to work on the Chalk aquifers of South East England, this is almost is a polar opposite. In the UK, nice steady drizzle over the winter maybe unpleasant for most people but it is heaven for ducks and water resource managers, because the soil gets saturated and water flows down into cracks and pore-spaces of the underlying rock, then on to providing baseflow for rivers and wetlands.

In the African drylands, it is the floodwater that is critical for focused recharge along ephemeral river valleys and depressions in the landscape. In parallel to this work, research on climate change indicates that in these areas of West and East Africa, rainy seasons are likely to come later and have fewer rain days – but with the same or more volume of rainfall. The inference from this is that when it does rain, it will rain harder – and more of it will find its way into the ground.

So, looking ahead, the role of aquifers in acting as a buffer between periods of flood and drought will become more and more important. This makes Managed Aquifer Recharge (MAR) look increasingly important to capture floods, both to protect lives and property from damage and to have that water available through the long dry seasons.

One such low-cost opportunity is the way that road drainage is designed so that instead of dumping storm water into already swollen rivers, they divert the water into infiltration ponds and ditches, which can farmers can use when the storm subsides.

Tropical and sub-Tropical climates around the world are always challengingly variable, and these extremes look set to expand, but for drillers and water users at least there is this one silver lining.

 

Just how much do countries rely on groundwater point sources for their drinking water?

Preliminary analysis of census and national survey data from the 2019 Joint Monitoring Programme, by Dr Kerstin Danert

An important issue for those of us that think a lot about groundwater is the extent that various countries rely on it for their drinking water.

The data presented in the table below has been prepared from the 2019 data published by the Joint Monitoring Programme (JMP) of the World Health Organisation (WHO) and UNICEF (see https://washdata.org/data). Each country has an associated Country File (an excel spreadsheet) with collated data on Water, Sanitation and Hygiene use. This data is gathered from national censuses as well as household surveys such as the Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS) and many others. The country files given excel spreadsheets on the JMP website (not to mention the underlying surveys) contain a wealth of data!

The table below shows the percentage of the population that rely on groundwater point sources as their main source of drinking water for every country and territory for the most recent year for which census or survey data is available. The data is presented for urban, rural and total populations.  Groundwater point sources include protected and unprotected wells and springs, as well as tube wells and boreholes.  Countries may have slightly different nomenclature for the above terms, but these are harmonised in the country tables produced by the JMP.

It is important to note that the data only includes point sources.  Water that is bought from vendors, sold in bottles/sachets or transmitted in pipes may also originate from groundwater, but this information is not generally collated by the censuses or surveys and thus cannot be reflected.  Consequently, the actual dependency of a particular on groundwater for drinking may be considerably higher. In addition, national governments may also make calculations based on the infrastructure available and assumed number of users per source. Due to the different methods of data collection and calculation, these estimates may differ from that collected by the household survey or census.

Please note that the analysis below has not been peer-reviewed, and so if you are intending to use the data, please do check in the respective JMP country file.  You can access Country Files on: https://washdata.org/data. Click on map to select country, download “Country file” and open the “Water Data” tab. In case you spot any mistakes in the table below, please respond in the comments in the blog below or contact the author directly, via rwsn@skat.ch.

Table 1 Groundwater point source as main drinking water source (% of the population classified as urban, rural and total)

Urban Rural Total
Country Census/ Survey Year Ground-water point source as main drinking water source (% of the urban pop.) Census/ Survey Year Ground-water point source as main drinking water source (% of the rural pop.) Census/ Survey Year Ground-water point source as main drinking water source (% of the total pop.)
Afghanistan 2017 57.3% 2017 71.5% 2017 68.1%
Albania 2012 6.4% 2012 14.7% 2012 10.2%
Algeria 2013 6.6% 2013 19.6% 2013 11.3%
American Samoa 2010 0.5%
Andorra 2005 6.6%
Angola 2016 17.7% 2016 43.0% 2016 26.8%
Anguilla 2009 0.7% 2009 0.7%
Antigua and Barbuda 2011 0.4%
Argentina 2013 9.1% 2010 37.7% 2010 15.0%
Armenia 2016 0.1% 2016 2.6% 2016 1.1%
Aruba 2010 1.3%
Australia 2013 0.1% 2013 1.1% 2013 0.5%
Azerbaijan 2017 0.1% 2017 12.1% 2017 5.4%
Bahamas 2010 2.9%
Bahrain 1995 1.4%
Bangladesh 2016 66.4% 2016 94.7% 2016 84.9%
Barbados 2010 0.1% 2012 0.1%
Belarus 2012 2.7% 2012 32.9% 2012 11.1%
Belize 2016 0.3% 2016 4.1% 2016 2.5%
Benin 2014 39.4% 2014 56.8% 2014 48.9%
Bhutan 2017 0.3% 2017 0.6% 2017 0.5%
Bolivia (Plurinational State of) 2017 5.0% 2017 42.2% 2017 16.5%
Bosnia and Herzegovina 2012 3.6% 2012 11.4% 2012 8.9%
Botswana 2017 0.1% 2017 14.9% 2017 5.3%
Brazil 2017 0.4% 2017 8.4% 2017 1.6%
British Virgin Islands 2010 1.9%
Brunei Darussalam 2011 0.1% 2011 0.1% 2011 0.1%
Bulgaria 2001 0.4% 2001 2.7% 2001 1.1%
Burkina Faso 2017 17.1% 2017 85.6% 2017 72.9%
Burundi 2017 8.6% 2017 68.1% 2017 61.5%
Cabo Verde 2007 0.1% 2012 15.1% 2012 5.1%
Cambodia 2016 13.5% 2016 47.2% 2016 40.2%
Cameroon 2014 35.5% 2014 74.1% 2017 50.0%
Canada 2011 0.1% 2011 0.7% 2011 0.3%
Caribbean Netherlands 2001 27.3%
Cayman Islands 2010 4.9% 0.0% 2010 4.9%
Central African Republic 2010 49.1% 2010 92.1% 2010 75.4%
Chad 2015 48.0% 2015 82.4% 2015 74.6%
Chile 2017 0.6% 2017 4.0% 2017 2.4%
China 2013 7.4% 2013 43.1% 2016 22.4%
Colombia 2018 0.4% 2018 13.7% 2018 3.3%
Comoros 2012 5.1% 2012 21.3% 2012 16.2%
Congo 2015 24.9% 2015 65.7% 2015 38.3%
Cook Islands 2011 0.0%
Costa Rica 2018 0.0% 2018 0.5% 2018 0.2%
Côte d’Ivoire 2017 33.9% 2017 71.0% 2017 49.5%
Croatia 2003 3.3% 2003 18.0% 2003 20.0%
Cuba 2011 13.5% 2014 41.9% 2011 18.2%
Curaçao 2011 0.9%
Czechia 2003 1.5% 2003 7.1%
Democratic People’s Republic of Korea 2017 17.1% 2017 58.1% 2017 33.1%
Democratic Republic of the Congo 2014 33.0% 2014 79.4% 2014 63.5%
Djibouti 2017 0.6% 2017 55.5% 2017 10.9%
Dominica 2001 0.6% 2001 6.3% 2009 0.3%
Dominican Republic 2016 0.1% 2016 2.3% 2016 0.7%
Ecuador 2017 1.1% 2017 17.1% 2017 6.1%
Egypt 2017 0.4% 2017 2.1% 2017 1.4%
El Salvador 2017 3.0% 2017 12.3% 2017 6.6%
Equatorial Guinea 2011 44.7% 2011 51.9% 2011 48.4%
Eritrea 2010 3.4% 2010 36.0% 2010 24.6%
Estonia 2010 1.7% 2010 18.8% 2010 6.7%
Eswatini 2014 3.7% 2014 31.5% 2014 24.0%
Ethiopia 2017 5.1% 2017 62.3% 2017 52.0%
Falkland Islands (Malvinas) 2016 43.7%
Fiji 2014 1.1% 2014 13.6% 2014 7.2%
Finland 1999 1.0% 2005 5.0% 2005 1.0%
French Guiana 1999 5.0% 1999 6.0% 2015 13.5%
Gabon 2013 3.3% 2013 37.8% 2013 8.2%
Gambia 2013 14.4% 2013 60.0% 2013 32.6%
Georgia 2017 4.9% 2017 46.9% 2017 22.2%
Germany 2007 0.8% 2007 0.8% 2007 0.0%
Ghana 2017 11.3% 2017 56.7% 2017 36.0%
Greece 2001 0.2% 2001 3.8%
Grenada 1999 4.0% 1999 18.0%
Guadeloupe 2006 0.8% 2006 0.3% 2006 0.8%
Guam 2010 0.1%
Guatemala 2015 5.0% 2015 19.6% 2015 13.4%
Guinea 2016 32.8% 2016 75.3% 2016 59.0%
Guinea-Bissau 2014 41.0% 2014 78.0% 2014 61.7%
Guyana 2014 1.3% 2014 5.5% 2014 4.4%
Haiti 2017 8.1% 2017 56.5% 2017 37.5%
Honduras 2017 2.0% 2017 4.2% 2017 3.0%
Hungary 1990 5.0% 1990 28.9%
India 2016 23.8% 2016 63.7% 2016 50.5%
Indonesia 2018 35.2% 2018 66.9% 2018 49.6%
Iran (Islamic Republic of) 2015 1.8% 2015 4.6% 2015 0.8%
Iraq 2018 0.5% 2018 4.6% 2018 1.8%
Ireland 2006 0.0% 2006 0.5%
Italy 2001 3.9%
Jamaica 2014 0.0% 2014 1.2% 2014 0.6%
Jordan 2016 0.3% 2016 0.7% 2016 0.4%
Kazakhstan 2015 3.2% 2015 21.0% 2015 11.5%
Kenya 2017 21.2% 2017 54.1% 2017 46.2%
Kiribati 2014 0.0% 2014 0.0% 2014 0.0%
Kyrgyzstan 2014 1.1% 2014 11.3% 2014 8.1%
Lao People’s Democratic Republic 2017 9.0% 2017 46.0% 2017 34.7%
Latvia 2003 2.4% 2003 12.5%
Lebanon 2016 10.9%
Lesotho 2015 5.5% 2015 27.8% 2015 21.4%
Liberia 2016 58.7% 2016 74.7% 2016 65.3%
Libya 1995 35.8% 1995 26.9% 2014 19.1%
Madagascar 2016 24.5% 2016 61.6% 2016 57.6%
Malawi 2017 16.3% 2017 86.0% 2017 73.8%
Malaysia 2003 0.8% 2003 6.7%
Maldives 2014 0.1% 2014 0.2% 2017 0.5%
Mali 2018 19.5% 2018 72.3% 2018 56.2%
Marshall Islands 2017 0.2% 2017 2.5% 2017 0.6%
Martinique 1999 0.5% 2015 0.4%
Mauritania 2015 6.5% 2015 49.4% 2015 29.1%
Mayotte 0.0% 2013 2.5%
Mexico 2017 0.8% 2017 9.5% 2017 2.8%
Micronesia (Federated States of) 2010 3.6% 2010 10.7% 2010 9.1%
Mongolia 2016 12.8% 2016 52.7% 2016 25.8%
Montenegro 2013 5.1% 2013 29.2% 2013 14.1%
Montserrat 1998 2.0% 1998 100.0% 2001 0.1%
Morocco 2012 1.0% 2012 27.2% 2012 10.2%
Mozambique 2015 21.4% 2015 62.5% 2015 49.6%
Myanmar 2016 34.3% 2016 74.8% 2016 64.0%
Namibia 2016 0.6% 2016 23.4% 2016 11.8%
Nauru 2011 1.6% 2011 0.0% 2011 1.6%
Nepal 2016 41.8% 2016 46.8% 2016 44.4%
New Caledonia 2014 3.1%
Nicaragua 2014 4.4% 2014 59.9% 2016 21.4%
Niger 2017 33.9% 2017 71.0% 2017 49.5%
Nigeria 2018 45.3% 2018 73.1% 2018 60.0%
Niue 1999 20.0% 2010 0.0%
North Macedonia 2011 1.5% 2011 15.1% 2011 7.7%
Northern Mariana Islands 2000 1.3% 0.0% 2010 1.1%
Oman 2014 5.1% 2014 10.0% 2014 6.4%
Pakistan 2016 30.4% 2016 44.0% 2016 39.1%
Panama 2015 0.7% 2015 14.6% 2017 0.0%
Papua New Guinea 2017 2.8% 2017 7.5% 2017 7.1%
Paraguay 2017 2.1% 2017 9.2% 2017 4.8%
Peru 2017 1.5% 2017 11.1% 2017 3.8%
Philippines 2017 8.4% 2017 37.6% 2017 23.9%
Portugal 2001 0.1% 2001 0.7%
Puerto Rico 1995 1.8%
Republic of Korea 2015 1.0%
Republic of Moldova 2012 16.9% 2012 65.1% 2012 47.1%
Réunion 2015 0.2%
Romania 1994 11.3% 1994 81.0%
Russian Federation 2009 3.4% 2009 19.5% 2009 8.6%
Rwanda 2017 17.2% 2017 58.4% 2017 50.4%
Saint Kitts and Nevis 1999 27.0% 1999 27.0% 2007 0.3%
Saint Lucia 2012 0.5% 2012 2.0% 2012 1.6%
Saint Vincent and the Grenadines 1999 20.0% 2012 0.1%
Samoa 2016 2.6% 2016 5.6% 2016 5.0%
Sao Tome and Principe 2010 4.5% 2010 11.7% 2010 6.9%
Saudi Arabia 2017 0.2%
Senegal 2017 7.2% 2017 35.0% 2017 22.5%
Serbia 2014 2.4% 2014 11.7% 2014 6.2%
Sierra Leone 2017 54.7% 2017 68.9% 2017 62.6%
Sint Maarten (Dutch part) 2011 7.4%
Slovakia 2003 2.3% 2003 2.3% 2011 13.1%
Solomon Islands 2015 8.6% 2016 27.6% 2015 17.5%
Somalia 2017 9.5% 2017 60.5% 2017 34.1%
South Africa 2017 0.5% 2017 10.1% 2017 3.8%
South Sudan 2017 66.5% 2017 80.1% 2017 77.3%
Spain 2003 0.6% 2003 0.3%
Sri Lanka 2016 17.3% 2016 51.0% 2016 45.3%
Sudan 2014 2.2% 2014 13.2% 2014 9.8%
Suriname 2017 3.1% 2017 5.4% 2017 3.8%
Syrian Arab Republic 2018 4.2% 2018 11.6% 2018 8.4%
Tajikistan 2017 5.2% 2017 18.7% 2017 15.4%
Thailand 2016 1.8% 2016 6.2% 2016 4.2%
Timor-Leste 2016 20.0% 2016 33.6% 2016 29.9%
Togo 2017 36.6% 2017 61.2% 2017 51.8%
Tonga 1999 28.0% 1999 24.0% 1996 1.7%
Trinidad and Tobago 2011 0.9% 2011 1.0% 2011 0.9%
Tunisia 2015 0.5% 2015 10.8% 2015 3.7%
Turkey 2013 5.0% 2013 40.0% 2013 13.0%
Turkmenistan 2016 4.4% 2016 34.3% 2016 22.6%
Turks and Caicos Islands 1999 22.0% 1999 40.0% 2012 1.7%
Tuvalu 2007 1.7% 2007 0.5% 2007 1.1%
Uganda 2017 35.8% 2017 79.6% 2017 71.9%
Ukraine 2018 11.5% 2018 61.2% 2018 27.8%
United Arab Emirates 2003 0.2% 2018 0.1%
United Republic of Tanzania 2017 19.4% 2017 50.5% 2017 41.2%
United States of America 2015 3.0% 2015 45.2% 2015 11.1%
Uruguay 2017 0.0% 2017 3.1% 2017 0.2%
Uzbekistan 2015 6.9% 2015 22.7% 2015 14.2%
Vanuatu 2016 1.6% 2016 4.8% 2016 4.0%
Venezuela (Bolivarian Republic of) 2011 4.3% 2011 25.6% 2011 6.8%
Viet Nam 2016 19.5% 2016 57.2% 2016 45.2%
West Bank and Gaza Strip 2017 1.2% 2017 3.2% 2017 1.5%
Yemen 2013 2.3% 2013 43.1% 2013 31.6%
Zambia 2015 26.7% 2015 76.8% 2015 55.8%
Zimbabwe 2017 11.1% 2017 77.5% 2017 57.0%

Photo:  Groundwater provides over 80% of the rural population with its main source of drinking water in South Sudan. Photo taken in 2014 in Northern Bahr el Ghazal by Kerstin Danert.

 

 

 

The rise of the off-grid city?

Adrian Healy reports on the findings of research undertaken in Lagos on the proliferation of domestic boreholes. This article was originally published in GeoDrilling International, and can be read here.

The conventional model of urban development focuses on centralised water service provision, where the state ensures a supply of water through storage and treatment plants and a grid of interconnected pipelines. Yet in many of our fastest growing cities, particularly in Africa and parts of Asia, this model is being turned on its head. Here, households, and business users, are increasingly turning to an ‘off-grid’ model, where they take responsibility for their own water supply. Nowhere is this more true than in the thriving megalopolis of Lagos in Nigeria, which serves as an example to practitioners around the world.

The public supply of water is estimated to reach no more than one in ten households living in Lagos State and, with a rapidly rising population, that proportion is changing every day. Despite their best efforts, the city authorities struggle to keep up with the pace of change, hampered further by an ageing infrastructure. In the absence of a reliable and convenient supply of water, it is perhaps little wonder that those who are able to secure their own water supplies do so. The result is a proliferation of domestic boreholes, as households seek to tap the accessible groundwater reserves beneath their feet. Whilst the actual number of domestic boreholes is unknown the possible numbers are staggering. Lagos State Water Corporation suggests that there may be anything up to 200,000 such boreholes in the State. Separately, a 2017 survey of 539 households living in Lagos State found that 51% reported owning their own borehole, with a further 36% reported that they shared a private borehole with other families[1].

The rise in the numbers of domestic boreholes is typically explained as a failure of the government to supply water to households. The public network often does not reach new housing developments and, where it does reach, failures of supply are commonplace. What is less often remarked on is the role played by a thriving drilling industry, fuelled by innovation and new entrants. Certainly, the development of new technologies, often imported from the oil industry or from abroad, has played a major role in driving the establishment of the borehole-drilling industry in Lagos. As costs of entry have fallen, increasing numbers of new companies have started up, offering cheap construction methods which are affordable by more and more households. Together, these factors are driving the evolution of a city that relies on off-grid water infrastructures.

This rise of the off-grid city has, in many ways, enabled the continuous expansion of Lagos as a major economic centre. For those who can afford their own borehole it has also delivered peace of mind as well as health and economic benefits, at least in the short-term. Questions though are now being asked as to the longer-term implications of this, particularly by the more professional members of the drilling and groundwater community. They point to the rise of poorly constructed boreholes as prices and drilling standards fall. They worry that this may lead to widespread contamination of the groundwater, whilst also reporting falling water tables in many areas, leading to fears of over-abstraction and the potential for saline intrusion.

Understanding whether these worries are well-founded is hampered by the lack of any system for monitoring either the quality or the amount of water being abstracted from the aquifers. State Government proposals to require owners of domestic boreholes to register these have foundered on the fear that this will be a front for the taxing of private water supplies. At the same time, our research indicates that the broader population is relaxed about the upward trend in boreholes, regarding the supply of groundwater as infinite (Figure 1). However, attitudes towards the quality of that water are more mixed, with around half concerned for the future. Evidence as to whether these beliefs are well-placed is currently lacking and requires longer-term data collection, particularly in terms of the amount of ground water available. Our research into levels of e-coli found in 40 groundwater sources demonstrates that residents’ caution about quality is well-founded (Figure 2). However, again, longer term monitoring is required if we are to better understand the risks of contamination over time.

Figure 1: Residents’ perceptions of groundwater exploitation in Lagos

lagos1

Figure 2

 

Conclusions

In Lagos, as in many other cities, the rise of the off-grid city is due to a mix of social, economic, political and hydrogeological factors. Attempts to overcome the water gap though public provision alone are struggling with the sheer scale of investment required and speed of change in population. The rise of private provision of water supplies has fuelled the growth of the city and, in turn, has been fuelled by a rising tide of prosperity. Yet there are real concerns that the sheer proliferation of boreholes and unregulated abstraction may be storing up problems for the future. So what are the answers? Certification and licensing approaches will certainly help, but only if there is both the will and means to enforce them. Improving knowledge and awareness through education and training, both of the wider public and amongst new contractors, will also help. In the short term it may be that we need to find new mechanisms to monitor the health of our aquifers if we are not to encounter longer-term crises. Drilling contractors can be at the forefront of this exercise, helping to ensure the resilience and durability of the off-grid city.

Acknowledgements

Dr. Adrian Healy, is a Research Fellow at Cardiff University. His research focuses on themes of urban resilience to shocks and hazards. He gratefully acknowledges the support of all his colleagues involved in the RIGSS project, particularly Prof. Moshood Tijani (University of Ibadan), Prof. Ibrahim Goni (University of Maiduguri) and the British Geological Survey. Financial support was provided by NERC-GCRF ‘Building Resilience’ grant (NE/P01545X/1). Further information on the issues of domestic borehole development in Nigeria can be found here.

Figure 2 is reproduced with thanks to Dr. Kirsty Upton and the British Geological Survey, who prepared the original version.

 

[1] https://www.cardiff.ac.uk/__data/assets/pdf_file/0003/1090650/Perspectives_of_households_in_Lagos.pdf

 

Understanding the invisible: Uganda’s efforts to increase access to detailed groundwater data

This is the second in a series of four blogs entitled Professional Borehole Drilling: Learning from Uganda written by Elisabeth Liddle, and a RWSN webinar in 2019 about professional borehole drilling. It draws on research in Uganda by Liddle and Fenner (2018). We welcome your thoughts in reply to this blog below. [Note: The original blog was revised on 03 April 2019 to correct an inaccurate representation of the situation].

While access to improved water sources has steadily increased across rural sub-Saharan Africa, several studies have raised concerns over the extent to which these sources are able to provide safe and adequate quantities of water over the long term (Foster et al., 2018; Kebede et al., 2017; Owor et al., 2017; Adank et al., 2014). Borehole design and siting are essential to ensure that the subsequent water point will continue to provide safe and adequate quantities of water. Access to detailed and accurate groundwater information can greatly aid siting and borehole design (UNICEF/Skat, 2016; Carter et al., 2014).

Skat Foundation and UNICEF have been key advocates for increasing access to detailed groundwater data including the recent guidance note which pointed out that ‘groundwater information’ is essential when seeking to improve the quality of borehole implementation in low- and middle-income countries (see Figure 1; UNICEF/Skat, 2016). In this blog I provide some insights into the ways in which Uganda has sought to increase access to groundwater data is recent years.

pic1

pic2

pic3

Fig. 1: Six areas of engagement for increasing drilling professionalism (Skat/UNICEF, 2016).

Groundwater resource mapping in Uganda

Significant steps have been taken in recent years to increase access to detailed groundwater data in Uganda. Much of this began in 2000 when the Directorate of Water Resources and Management (DWRM) within the Ministry of Water and the Environment (MWE) began a nationwide groundwater mapping project. Using data sourced from the borehole completion reports that drilling contractors are required to submit every quarter, DWRM has developed are series of maps for each district. These include:

  1. Water source location map, underlain by a geology map.
  2. Recommended water source technology map (technology recommendation is based on main water strike depth and yield information).
  3. Hydrogeological condition map – includes 4 sub-maps:
    • inferred first water strike depth[1],
    • inferred main water strike depth[2],
    • inferred thickness of overburden[3], and
    • inferred static water level depth[4].
  4. Groundwater quality map: highlights areas where water quality is expected to be problematic.
  5. Groundwater potential – Drilling success rate map: combines expected yield success rate[5] coupled with expected water quality conditions.

Tindimugaya (2004) explains these maps in greater detail, along with the ways in which such maps can help the implementation process. An example of these maps for Kibaale district is available on the MWE’s website.

This mapping work is ongoing, however, by May 2017 DWRM had mapped 85% of Uganda’s districts. The magnitude of these maps and the level of detail they capture is remarkable. These maps have become a great asset for district local governments, non-governmental organisations, and others responsible for water point siting and construction.

Ongoing challenges

While Uganda has made remarkable progress in recent years with their groundwater mapping efforts, there have been several challenges along the way (Liddle and Fenner, 2018), mostly related to data accuracy. When interviewing those in Uganda for this research, there were reports that in some (but not all) cases, inaccurate data is submitted. When looking at why inaccurate data is sometimes submitted, two key issues were noted:

  1. There often isn’t a qualified consultant on site full-time for drilling supervision. While it is the drilling contractor’s responsibility to have a member of staff recording the drilling log, an independent supervisor should also keep a log and check the driller’s log for accuracy before this is submitted to DWRM. Without full-time supervision, however, this cannot happen. Furthermore, even with full-time supervision, if the supervisor is not a hydrogeologist, it is unlikely that they will be keeping accurate and detailed logs.
  2. The lump sum no-water-no-pay payment terms via which Ugandan drillers are often paid (see blog “Turnkey contracts for borehole siting and drilling”). When these contract terms are used, to be paid, drillers need to prove that they have drilled a successful borehole; as a result, there were reports of drillers exaggerating a given borehole’s yield in order to be paid. Skewing data in this way is concerning, as not only will these boreholes struggle to provide adequate quantities of water post-construction, but this high-yield data is then entered into the drilling log database and used to produce the hydrogeological maps. Increasing the quality of drilling supervision and ensuring data is not skewed in this way is essential if the accuracy of DWRM’s maps is to increase going forward.

Overall, Uganda has made remarkable progress over the past two decades in increasing the level of groundwater information available in-country. There are very few examples in the African continent comparable to what Uganda has achieved! As noted above, the resultant maps have become a great asset for district local governments, non-governmental organisations, and others responsible for water point siting and construction.

Increasing the accuracy of borehole completion reports is an essential next steps for Uganda. Furthermore, other countries should be aware of these challenges as they embark on their own mapping exercises and ensure necessary measures are in place to prevent these problems in their own contexts.

What do you think?

So what do you think? Do you have experiences of collecting and collating groundwater data, or using groundwater maps? Is this something that should be started in your country? You can respond below by posting in the reply below, or you can join the live webinar on the 14th of May (register here).

[1]‘Expected first water strike depth’ = the depth at which a driller is likely to first encounter groundwater. In most cases the driller will need to continue drilling past this point if the borehole is to be able to provide sufficient quantities of water for users.

[2] ‘Expected main water strike depth’ = the depth at which a driller is likely to find the main aquifer that will be able to provide sufficient quantities of water for users.

[3] Overburden refers to the unconsolidated material that overlays the bedrock. The ‘expected overburden thickness’ map highlights the expected depth of this unconsolidated material across Uganda.

[4] ‘Expected static water level’ = the expected groundwater depth without any pumping disturbance.

[5] ‘Yield success’ refers to a borehole being able to sustain a pumping rate of 500 litres/hour. If a borehole can sustain this pumping rate, it is considered successful in regards to yield.

References

Adank, M., Kumasi, T.C., Chimbar, T.L., Atengdem, J., Agbemor, B.D., Dickinson, N., and Abbey, E. (2014). The state of handpump water services in Ghana: Findings from three districts, 37th WEDC International Conference, Hanoi, Vietnam, 2014, Available from https://wedc-knowledge.lboro.ac.uk/resources/conference/37/Adank-1976.pdf

Carter, R., Chilton, J., Danert, K. & Olschewski, A. (2014) Siting of Drilled Water Wells – A Guide for Project Managers. RWSN Publication 2014-11 , RWSN , St Gallen, Switzerland, Available from http://www.rural-water-supply.net/en/resources/details/187

Foster, T., Willetts, J., Lane, M. Thomson, P. Katuva, J., and Hope, R. (2018). Risk factors associated with rural water supply failure: A 30-year retrospective study of handpumps on the south coast of Kenya. Science of the Total Environment,, 626, 156-164, Available from https://www.sciencedirect.com/science/article/pii/S0048969717337324

Kebede, S., MacDonald, A.M., Bonsor, H.C, Dessie, N., Yehualaeshet, T., Wolde, G., Wilson, P., Whaley, L., and Lark, R.M. (2017). UPGro Hidden Crisis Research Consortium: unravelling past failures for future success in Rural Water Supply. Survey 1 Results, Country Report Ethiopia. Nottingham, UK: BGS (OR/17/024), Available from https://nora.nerc.ac.uk/id/eprint/516998/

Liddle, E.S. and Fenner, R.A. (2018). Review of handpump-borehole implementation in Uganda. Nottingham, UK: BGS (OR/18/002), Available from https://nora.nerc.ac.uk/id/eprint/520591/

Owor, M., MacDonald, A.M., Bonsor, H.C., Okullo, J., Katusiime, F., Alupo, G., Berochan, G., Tumusiime, C., Lapworth, D., Whaley, L., and Lark, R.M. (2017). UPGro Hidden Crisis Research Consortium. Survey 1 Country Report, Uganda. Nottingham, UK: BGS (OR/17/029), Available from https://nora.nerc.ac.uk/id/eprint/518403/

Tindimugaya, C. (2004). Groundwater mapping and its implications for rural water supply coverage in Uganda. 30th WEDC International Conference, Vientiane, Lao PDR, 2004. Available from https://wedc-knowledge.lboro.ac.uk/resources/conference/30/Tindimugaya.pdf

UNICEF/Skat (2016). Professional water well drilling: A UNICEF guidance note. St Gallen, Switzerland: Skat and UNICEF. Available from http://www.rural-water-supply.net/en/resources/details/775

Acknowledgements

This work is part of the Hidden Crisis project within the UPGro research programme – co-funded by NERC, DFID, and ESRC.

The fieldwork undertaken for this report is part of the authors PhD research at the University of Cambridge, under the supervision of Professor Richard Fenner. This fieldwork was funded by the Ryoichi Sasakawa Young Leaders Fellowship Fund and UPGro: Hidden Crisis.

Thank you to those of you from Makerere University and WaterAid Uganda who provided logistical and field support while I was conducting the interviews for this report (especially Dr Michael Owor, Felece Katusiime, and Joseph Okullo from Makerere University and Gloria Berochan from WaterAid Uganda). Thank you also to all of the respondents for being eager and willing to participate in this research.

Photo: “Groundwater Supply Technology Options map on display in the Kayunga District Water Office” (Source: Elisabeth Liddle).

Favouring Progress: Yemen’s Water Scarcity Dilemma of the 21st Century

Our RWSN Guest blogger Muna Omar takes a critical look at the issue of dwindling water supply in Yemen’s capital city

The population of Sana’a, the capital city of Yemen, depend on deep wells that are usually dug to a maximum depth of 200 meters for their drinking water. The wells draw on a cretaceous sandstone aquifer northeast and northwest of the city, with a third of the wells operated by the state-owned Sana’a Local Corporation for Water Supply and Sanitation drilled to 800 to 1,100 meters. The combined output the corporation’s wells barely meet 35% of needs of Sana’a growing population which includes displaced people, asylum seekers, refugees and other newcomers.

Public piped water delivery is once every 40 days to some houses, while others don’t receive piped water at all. Sana’a’s population is thus supplied either by small, privately owned networks, hundreds of mobile tankers and water from people’s own private wells. As water quality has degenerated, privately owned kiosks that use a water filtration method to purify poor-quality groundwater have spread in Sana’a and other towns. Many people rely on costly water that is provided by private wells supplying tankers. These tankers don’t really consider appropriate cleaning, so the quality of the water is questionable.

Despite the challenges with pumping due to a shortage of fuel and with rising prices, private well owners are trying to capture the remains of the valuable groundwater resources before their neighbours do. Coupled with the on-going war, drought sees Yemen facing a major water crisis. Water table data is based on old research which can be challenging to verify now. Given the data and the current severe situation as water use exceeds aquifer recharge, it is estimated that the water table drops by approximately 2-6 feet annually.

Although Sana’s groundwater is probably the best water in Yemen, it is considered below acceptable standards for human consumption as water infrastructure has been damaged by warplanes and the sanitation workers went on strike because they didn’t get their salary. The latter left plenty of garbage on the streets that led to contamination of drinking water supplies. Meanwhile wastewater began to leak out into irrigation canals and contaminate drinking water supplies. Inadequate attention to groundwater pollution has directly affected the quality of Sana’a’s drinking water supplies.

It Yemen, as a whole, it is estimated that about 14.5 million people don’t have sustainable access to clean drinking water. Inadequate water supply has affected the country with the worst outbreak of cholera in the human history. Over 1 million suspected cases of cholera have been reported in Yemen from 27 April 2017 to present day. Other water-borne diseases include a recent peak in diphtheria that reached 1,795 probable cases with 93 Associated Deaths and a case fatality rate (CFR) of 5.2% by 19 May 2018.

Yemen’s water problem is not only immediate with groundwater resources under pressure as never before to meet not only drinking water needs, but also demands for irrigation. In Yemen, the pressures of climate change, demographic change and the on-going conflict place an immense burden on professionals working in the country. The enormity of the urgent needs mean that water resources management is neglected, despite being absolutely essential for the future of Yemen’s population.

Sana’a groundwater resources are significantly depleted in many areas and acknowledged globally as one of the world’s scarcest water supplies. Sana’a may be the first capital city in the world to run out of water. Looking forwards, how can the country produce more food, raise farmer incomes and meet increase water demands if there is less water available?

Clearly, there are several interrelated aspects contributing to the current water crisis in Sana’a specifically and Yemen in general, and the population has to innovate to find solutions. Future supply options include pumping desalinated water from the Red Sea over a distance of 250 km, over 2,700 meter-high mountains into the capital, itself located at an altitude of 2,200 meters. However, the feasibly of this is questionable with the enormous pumping cost would push the price of water up to $10 per cubic meter. Other options to supply Sana’a from adjacent regions are fraught due to water rights.

Groundwater data is the critical foundation for water managers to both prevent problems and formulate solutions. Data is lacking in many of Yemen’s groundwater basins. Even heavily used basins have no record of how much groundwater was withdrawn and remains in the aquifers, where it was pumped from? Nor are adequate data available on groundwater quality or aquifer characteristics. Furthermore, while the drought and other cutbacks on surface water supplies are motivating groundwater users to drill new or deeper wells in increasing numbers despite the fact that well owners don’t know how their aquifer is doing and so can’t anticipate changes. There is lack of data on private wells.

Lack of groundwater data in Yemen is not the result of ignorance about its importance, but is rather the victim of chronic underfunding and politics, which have been exacerbated by the on-going conflict. The war has made it almost impossible to measure and manage groundwater development and secure its long-term sustainability.

Having just completed the online course on “Professional drilling management” led by Skat Foundation, UNICEF, and the United Nations Development Programme Cap-Net, I have learned about the need to develop our knowledge in this regard. The course highlighted important immediate and long-term actions for Yemen:

  • Raise awareness within Yemen of the groundwater issues faced by the country.
  • Find practical ways to better understand groundwater, regulate its extraction, introduce control mechanisms and engage with the local population to develop effective actions.
  • Build capacity of government, NGOs, consultants, policy makers and beneficiaries through training in groundwater management.
  • Invest in building rain-water harvesting facilities in rural areas so the people don’t have to walk miles to collect water.
  • Invest in re-building infrastructure alongside improving water resources management.

Muna Omar is an Ethiopian refugee and a young water professional, living and working in Sana’a, undertaking monitoring and evaluation of humanitarian programmes in the water, sanitation and hygiene (WASH), health and nutrition sectors such as a cholera-response project, and an executive assistant with a local NGO.

This article was first published in GeoDrilling International and is reproduced with permission and thanks.

Why is Groundwater Data important?

by Dr Fabio Fussi, Università degli Studi di Milano-Bicocca

The role of groundwater data in rural water supply has changed markedly in over the last few year:

6th RWSN Forum in Kampala, 2011: Some pilot projects of groundwater data collection and organization is presented. Uganda is presenting its groundwater atlas, a promising example for other countries.

7th RWSN Forum in Abidjan,  2016: there were entire sessions dedicated to groundwater data collection, mapping, analysis and application, with presentation of country programs from national water institutions, some example of international projects to create continental or world groundwater database (e.g. the groundwater atlas of Africa from the British Geological Survey) and application of groundwater data analysis.

What has raised the interest up to this level? There are several factors:

  • Data collection has become easy, with IT tools available in portable devices and smartphones for water point mapping. The increased availability of information has allowed to use these data to take decision about groundwater development and monitoring.
  • Depletion of groundwater resources (both in quantity and quality) requires the definition of sustainable groundwater development strategies and monitoring the effectiveness and impact of their implementation.
  • International donors have an increased interest to support countries to create groundwater information system, and national water institutions have, in several cases, understood the importance to put effort in this.

This seems a promising path for the future to support an effective and sustainable use of groundwater. However there are critical factors that must be taken into consideration:

  1. An increasing amount of data are available, but still there is lack of control in their quality. National databases are full of information, but limited effort is spent to revise them and depurate from mistakes. If this aspect is not properly considered, the risk of incorrect interpretation is high, leading to the formulation of incorrect strategies.
  2. Despite of the huge amount of information and the availability of powerful tools to process it, the level of data analysis to deepen our understating of groundwater system and give a practical support for complex decisions seems still basic. At this time we need creativity, technical capacity and collaboration between decision makers and scientist to unlock the potential of massive groundwater databases.
  3. An unbelievable amount of information is available, held by national water authorities and organizations involved in groundwater development. Most of this information is in hard copy, almost unused, not yet transformed into numeric database. This task is huge and time consuming, but if we can support it, we avoid the risk to loose relevant data and in they can be easily used to take decisions.

In the coming years the effect of climate change and the increase in water needs (due to population growth and improved living conditions) will lead to a more intense exploitation of groundwater resources, whose feasibility and sustainability must be carefully evaluated by a detailed interpretation of reliable data.

Declining groundwater levels in Malawi impacting rural water supplies

RWSN member, Muthi Nhlema, has challenged the government of Malawi over how groundwater is used for rural water supplies: 30% of water points are not working across the country and he points to declining groundwater levels being a major factor. Mr Nhlema therefore challenged the wisdom of further drilling and groundwater development, if the use of the water resource is unsustainable.

Read the full article: The Nation, 1 October 2017

Groundwater Management into River Basin Organizations

A one-day training course in Dar es Salam, Tanzania Wednesday 20th, 2016.

 Background: Transboundary water management is of great importance to Africa as it has been emphasized in the African Water Vision 2025. Almost all Sub-Saharan African countries share at least one international river basin. In Africa there are about sixty transboundary lake and river basins and at least eighty transboundary aquifer basins. A training manual has been complied by a network of partners, including AGW-Net, ANBO, BGR, Cap-Net, IGRAC, IMAWESA, IWMI, IGRAC, and A4A – aqua for all in response to the needs expressed and is designed to help develop capacity on groundwater management within the basin organizations.

The Course: The 6th AWW (http://africawaterweek.com/6/) that takes place in Dar es Salaam (Tanzania) in July 18-22, 2016, will launch the manual, and at the same time implement a one-day training course on groundwater management. The course aims to: (1) promote sustainable groundwater resources management within the framework of IWRM in RBOs; (2) make groundwater resources in Africa more “visible” to water managers who are required to manage it sustainably; (3) raise awareness on the importance of groundwater resource to Africa, and especially in light of the growing impacts of climate change. Continue reading “Groundwater Management into River Basin Organizations”

WaterWired: Our Ten Cents: ‘Groundwater and the 8th World Water Forum’

By Prof. Michael E. ‘Aquadoc’ Campana.  Re-blogged from: http://aquadoc.typepad.com/waterwired/2016/06/our-ten-cents-groundwater-and-the-8th-world-water-forum.html 

GW_8WWF
It’s been my limited experience that trying to get groundwater on the agenda of the World Water Fora is like the proverbial pulling of teeth from a distraught grizzly bear.

In an ideal world, one should not have to do this because groundwater should be included in the discussions of IWRM, water management, water governance, water conflict, etc. But the powers-that-be don’t see it that way.

Below is a proposal the three organizations whose logos are shown above sent to the World Water Council in time for this week’s 8th World Water Forum Kick-Off session in Brasilia. We limited the text to two pages – one piece of paper – adhering to the KISS [Keep It Short, Stupid!] rule.

Comments are welcomed. The full text follows the PDF.

Download Groundwater at 8WWF_Final

Continue reading “WaterWired: Our Ten Cents: ‘Groundwater and the 8th World Water Forum’”

RWSN Discussion – Groundwater Regulation/La réglementation des eaux souterraines 27Jun/juin – 17 Jul/jul

Discussion and Webinar – Groundwater Regulation – 27th June to 17th July 2016

Much remains to be learned about groundwater regulation. Zambia is a case in point: with the enactment of the Water Resources Management Act in 2012, the new Water Resources Management Authority (WARMA) is currently developing regulations (statutory instruments) that cover the licencing of drillers and consultants, permitting and groundwater protection. Once these are passed into law, for the first time in the country’s history, groundwater will be regulated.

Continue reading “RWSN Discussion – Groundwater Regulation/La réglementation des eaux souterraines 27Jun/juin – 17 Jul/jul”