Turnkey contracts for borehole siting and drilling

This is the first in a series of four blogs entitled Professional Borehole Drilling: Learning from Uganda written by Elisabeth Liddle, and a RWSN webinar in 2019 about professional borehole drilling. It draws on research in Uganda by Liddle and Fenner (2018). We welcome your thoughts in reply to this blog below.

Drilling under a ‘turnkey contract’ has become increasingly common across sub-Saharan Africa. Recent research in Uganda by Liddle and Fenner (2018) found turnkey contracts to be the most common contract type when the private sector provides new rural handpump-boreholes, although this has not always been the case. In this blog we provide an overview of what turkey contracts are, why they are being used in Uganda, and the benefits and challenges associated with their use in Uganda.

What is a turnkey contract they and why are they being used in Uganda?

Under a turnkey contract a drilling contractor is responsible for both the siting and the drilling/installation work. Turnkey contracts are paid via ‘lump sum no-water-no-pay’ payment terms. If the borehole is successful, the driller will be paid the full lump sum price, regardless of the costs incurred on-site. If, however, the borehole is unsuccessful (dry or low-yielding), the driller will not be paid at all.

Turnkey contracts rose to prominence in Uganda in the mid-2000s as implementing agencies (District Local Governments and Non-Governmental Organisations) became increasingly frustrated with the number of unsuccessful boreholes that were being drilled when consultants were conducting the siting work. Because the consultant was telling the driller where to drill, if the borehole was unsuccessful, the implementing agency had to pay the driller for all the work done and materials used, i.e. according to a Bill of Quantities (BoQ). Unsuccessful boreholes were blamed on the quality of the consultants’ siting work, with briefcase consultants (meaning those with no formal geology or hydrogeology training) having flooded the market. Because of the low prices they offered, coupled with a lack of regulation, these consultants were gaining siting contracts.

Paying for unsuccessful boreholes was challenging and it was becoming difficult for District Local Governments to meet their targets for new safe water sources. Project managers were being made to look inept. Moreover, political leaders failed to understand that some unsuccessful boreholes were a common part of drilling, hence, if a driller was paid for an unsuccessful borehole, politicians saw this as corrupt. Some district water officers were even threatened with jail.

The solution found was to remove the consultant and hand over all of the responsibility for finding water to the driller. If the driller then drilled an unsuccessful borehole, they would not be paid as they were the ones responsible for siting the borehole. The risk of finding water of an inadequate yield fell squarely on the driller.

Benefits and challenges of turnkey contract use

Turnkey contracts have greatly simplified the procurement and contract management process for project managers in Uganda. Under turnkey contracts, implementing agencies only need to procure and manage a drilling contractor. Furthermore, as the amount the drilling contractor will be paid if the borehole is successful is determined during the tender process, there are no surprise costs for the implementing agency. Additionally, under the no water, no pay payment terms, agencies do not have to directly spend any money on unsuccessful boreholes; money is only being spent on boreholes that are declared successful.

While turnkey contracts have notable benefits, several concerns were raised among those interviewed in Uganda as to the quality of the work:

  • Siting based on ease of finding water: under turnkey contracts, drilling contractors need to find sufficient water in order to be paid. Consequently, it was widely reported that drilling contractors are siting boreholes where it is easy to find water, for example, in valleys, or near swamps or riverbanks. Not only are drilling contractors extremely likely to find water in these areas, hence be paid, but they will often drill to a much shallower depths than their lump sum cost estimate was based on. A greater margin can therefore be made in these areas. Boreholes situated in such areas, however, are vulnerable to pollution. While a borehole may pass water quality tests immediately after drilling, the water may be unsafe for human consumption in the rainy months as surface pollutant transport and leaching rates increase or in several years’ time as pollutants accumulate in these areas. Furthermore, community access may be limited, especially in rainy months when these areas may be vulnerable to flooding.
  • Short-cuts on-site: under no-water-no-pay payment terms, drilling contractors need to save money wherever possible so they can recover the losses that they make on unsuccessful boreholes. To save money, it was reported that certain drilling contractors in Uganda are known for:
  • Using low quality and/or hydrogeologically inappropriate materials, for example, galvanised iron rising mains rather than stainless steel in acidic groundwaters. Galvanised iron rising mains are 4-5 times cheaper than stainless steel. When galvanised iron rising mains are used in acidic groundwaters (which are common in Uganda), red/brown coloured water, unfit for human consumption is extremely likely (Casey et al., 2016).
  • Using inappropriate materials for the borehole design, for example, using 5″ casing when a 6/6.5″ open-hole borehole[1] has been drilled as 5″ casing is cheaper than 6/6.5″. To prevent the 5″ casing from falling into the 6/6.5″ open-hole, drilling contractors heat the base and stretch this to fit on top of the open area. 42% of drilling contractors interviewed (n = 14) admitted to this practice. While some see this as a clever trick, others were concerned that silt will accumulate in these boreholes over time, due to gaps between the casing and the consolidated rock and/or cracks that form in the thinly stretched areas of the casing. Such siltation will not only wear the handpump parts down, but it may also lead to appearance problems from the users’ perspective as this silt enters the water supply.
  • Stopping drilling at the first water strike. A great deal of money can be saved here; in Ethiopia, for example, drilling to 50 metres instead of 60 metres reduces the drilling cost by 13% (Calow et al., 2012). If the borehole does not penetrate the main aquifer, however, the quantity of water available post-construction may be problematic, even if the borehole passes the pumping test.
  • Skewing the pump test data or cutting the pump test time short to mask low-yielding, unsuccessful sites. These boreholes will inevitably be low-yielding post-construction, or in worst case, dry.

The need for drilling contractors to take the above shortcuts in Uganda is exacerbated by the fact that, in many cases, the lump sum contractors are paid for drilling a successful borehole is too low in the first instance. Furthermore, supervision by a trained hydrogeologist is rare.

Where to from here for turnkey contracts?

Opinions on whether turnkey contracts should continue to be used in Uganda differ among different actors: the majority of implementing agencies in Uganda believe the use of turnkey contracts should continue, while consultants and the Ministry of Water and the Environment (MWE) believe that they should cease, given the quality of work concerns outlined above.

MWE went so far to release a directive in January 2017 discouraging the use of turnkey contracts, instead stating that split contracts, one for siting (awarded to a hydrogeologist/consultant) and one for drilling/installation (awarded to a drilling contractor) be used going forward. Opinions among drilling contractors themselves seemed impartial; most do not mind working under turnkey contracts, they simply ask that the lump sum prices implementing agencies are willing to pay for successful boreholes increase in the future so they are not forced to take shortcuts on-site.

What do you think?

So what do you think? Do you have experiences of turnkey contracts for borehole drilling, or other practices that you would like to share. You can respond below by posting in the reply below, or you can join the live webinar on the 14th of May (register here).

References

Calow, R., MacDonald, A., and Cross, P. (2012). Corruption in rural water supply in Ethiopia. In J. Plummer (Ed.), Diagnosing Corruption in Ethiopia: Perceptions, realities and the way forward for key sectors (pp 121-179). Washington DC, USA: World Bank. Available from https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/8555.pdf

Casey, V., Brown, L., Carpenter, J.D., Nekesa, J., and Etti, B. (2016). The role of handpump corrosion in the contamination and failure of rural water supplies. Waterlines, 35(1), 59-77. Available from https://www.developmentbookshelf.com/doi/full/10.3362/1756-3488.2016.006

Liddle, E.S. and Fenner, R.A. (2018). Review of handpump-borehole implementation in Uganda, Nottingham, UK: BGS (OR/18/002). Available from https://nora.nerc.ac.uk/id/eprint/520591/

[1] Boreholes may be ‘fully-cased’ or ‘open-hole’. If a borehole is ‘fully-cased’ the entire vertical is cased, with screens in the water bearing layers. If the borehole is ‘open-hole’, however, only the unconsolidated areas of the vertical borehole are cased – the remaining consolidated rock is left ‘open’ (no casing or screens).

Acknowledgements

This work is part of the Hidden Crisis project within the UPGro research programme – co-funded by NERC, DFID, and ESRC.

The fieldwork undertaken for this report is part of the authors PhD research at the University of Cambridge, under the supervision of Professor Richard Fenner. This fieldwork was funded by the Ryoichi Sasakawa Young Leaders Fellowship Fund and UPGro: Hidden Crisis.

Thank you to those of you from Makerere University and WaterAid Uganda who provided logistical and field support while I was conducting the interviews for this report (especially Dr Michael Owor, Felece Katusiime, and Joseph Okullo from Makerere University and Gloria Berochan from WaterAid Uganda). Thank you also to all of the respondents for being eager and willing to participate in this research.

Photo: “Hidden Crisis team members using a CCTV camera to undertake downhole observations of the borehole construction of a community borehole” (Source: ‘BGS © NERC. UPGro Hidden Crisis Project.’)

Les contrats clés en main pour l’implantation et le forage de puits d’eau

Il s’agit du premier d’une série de quatre blogs intitulée ‘Le forage professionnel de puits d’eau: Apprendre de l’Ouganda” de Elisabeth Liddle et d’un webinaire en 2019 sur le forage de puits professionnel. Cette série s’appuie sur les recherches menées en Ouganda par Liddle et Fenner (2018). Nous vous invitons à nous faire part de vos commentaires en réponse à ce blog ci-dessous.

Les forages réalisés dans le cadre d’un “contrat clé en main ” sont devenus de plus en plus courants dans toute l’Afrique subsaharienne. Des recherches récentes menées en Ouganda par Liddle et Fenner (2018) ont montré que les contrats clés en main sont le type de contrat le plus courant lorsque le secteur privé fournit de nouveaux forages pour des pompes manuelles en milieu rural, bien que cela n’ait pas toujours été le cas. Dans ce blog, nous donnons un aperçu de ce que sont les contrats clé en main, pourquoi ils sont utilisés en Ouganda, et les avantages et les défis associés à leur utilisation en Ouganda.

Qu’est-ce qu’un contrat clé en main et pourquoi ces contrats sont-ils utilisés en Ouganda ?

Dans le cadre d’un contrat clé en main, un entrepreneur en forage est responsable à la fois de l’implantation et des travaux de forage et d’installation. Les contrats clés en main sont payés par le biais de modalités de paiement au forfait, c’est-à-dire “pas d’eau, pas de paiement “. Si le forage est fructueux, le foreur recevra la totalité du prix au forfait, quels que soient les coûts engagés sur place. Toutefois, si le forage est infructueux (forage à sec ou à faible rendement), le foreur ne sera pas payé du tout.

Les contrats clés en main ont pris de l’importance en Ouganda au milieu des années 2000 lorsque les agences d’exécution (autorités locales de district et Organisations Non Gouvernementales) devenaient de plus en plus frustrées par le nombre de forages infructueux réalisés lorsque les consultants effectuaient les travaux d’implantation de forages. Comme le consultant indiquait au foreur l’endroit où forer, si le forage échouait, l’agence de mise en œuvre devait payer le foreur pour tous les travaux effectués et les matériaux utilisés, c’est-à-dire selon un cahier des charges. L’échec des forages était imputé à la qualité du travail d’implantation des consultants ; de fait, les « consultants à mallette » (c’est-à-dire ceux qui n’avaient pas de formation officielle en géologie ou en hydrogéologie) avaient inondé le marché. En raison des bas prix qu’ils offraient et de l’absence de réglementation, ces consultants parvenaient à remporter des contrats d’implantation de forage.

Payer pour des forages infructueux était donc un problème, et il était devenu difficile pour les autorités locales de district d’atteindre leurs objectifs en matière de nouvelles sources d’eau potable. Les chefs de projet passaient pour incompétents. De plus, les responsables politiques ne comprenaient pas qu’un nombre de forages infructueux faisait partie intégrante du travail de forage ; par conséquent, si un foreur était payé pour un forage infructueux, les responsables politiques le considéraient comme corrompu. Certains responsables des services de l’eau au niveau du district ont même été menacés de prison.

La solution trouvée a été de retirer le consultant et de confier toute la responsabilité de la recherche de l’eau au foreur. Si le foreur forait alors un puits infructueux, il ne serait pas payé, car c’est lui qui était responsable de l’implantation du trou de forage. Le foreur prenait également tous les risques associés à un rendement d’eau inadéquat.

Avantages et défis de l’utilisation de contrats clés en main

Les contrats clés en main ont grandement simplifié le processus de passation de marché et de gestion de contrat pour les responsables de projets en Ouganda. Dans le cadre de contrats clés en main, les maitres d’ouvrage n’ont qu’à sélectionner et gérer un entrepreneur en forage. En outre, étant donné que le montant payé à l’entrepreneur si le forage est fructueux est déterminé au cours du processus d’appel d’offres, il n’y a pas de coûts imprévus pour le maitre d’ouvrage. De plus, en vertu des modalités de paiement « pas d’eau, pas de paiement », les organismes n’ont pas à dépenser directement de l’argent pour des forages infructueux ; l’argent n’est dépensé que pour des forages qui sont déclarés fructueux.

Bien que les contrats clés en main présentent des avantages notables, les chercheurs se sont entretenus avec plusieurs personnes en Ouganda qui se sont dites préoccupées par la qualité du travail :

  • Le choix du site est fonction de la facilité à trouver de l’eau: Dans le cadre de contrats clés en main, les entrepreneurs de forage doivent trouver suffisamment d’eau pour être payés. De multiples entretiens ont confirmé que les entrepreneurs en forage forent des puits là où il semble plus facile de trouver de l’eau, par exemple dans les vallées ou près des marécages ou des rivières. Non seulement les entrepreneurs de forage sont extrêmement susceptibles de trouver de l’eau dans ces zones, donc d’être payés, mais ils forent souvent à des profondeurs beaucoup moins profondes que celles sur lesquelles leur estimation forfaitaire de coûts était basée. Une marge plus importante peut donc être réalisée dans ces conditions. Les forages situés dans ces zones sont toutefois vulnérables à la pollution. Bien qu’un forage puisse passer les tests de qualité de l’eau immédiatement après avoir été foré, l’eau peut être impropre à la consommation humaine pendant les mois pluvieux en raison de l’augmentation du transport des polluants de surface et des taux de lixiviation ou, après plusieurs années, du fait de l’accumulation des polluants dans ces zones. En outre, l’accès des communautés à ces puits peut être limité, en particulier pendant les mois pluvieux où ces zones peuvent être vulnérables aux inondations.
  • Le bricolage pour faire des économies: En vertu des modalités de paiement « pas d’eau, pas de paiement »,, les entrepreneurs de forage doivent économiser dans la mesure du possible afin de pouvoir amortir les pertes qu’ils ont subies. Pour économiser de l’argent, il a été rapporté que certains entrepreneurs de forage en Ouganda sont connus pour les pratiques suivantes :
  • L’utilisation de matériaux de mauvaise qualité et/ou qui ne sont pas appropriés qux conditions hydrogéologiques, par exemple, des conduites montantes en fer galvanisé plutôt qu’en acier inoxydable dans les eaux souterraines acides. Les conduites montantes en fer galvanisé sont 4 à 5 fois moins chères que l’acier inoxydable. Lorsque des conduites montantes en fer galvanisé sont utilisées dans les eaux souterraines acides (qui sont courantes en Ouganda), une eau de couleur rouge/brune impropre à la consommation humaine est fort probable (Casey et al., 2016).
  • L’utilisation de matériaux inappropriés pour la conception du forage, par exemple, l’utilisation d’un tubage de 5 pouces lorsqu’un forage ouvert de 6/6,5 pouces[1] a été foré, car le tubage de 5 pouces est moins cher que celui de 6/6,5 pouces. Pour éviter que le tubage de 5 pouces ne tombe dans le trou ouvert de 6/6,5 pouces, les foreurs en chauffent la base et l’étirent pour l’ajuster au dessus de la zone ouverte. 42 % des entrepreneurs en forage interrogés (n = 14) ont admis avoir recours à cette pratique. Alors que certains y voient une bonne astuce, d’autres craignent que de la vase ne s’accumule dans ces forages avec le temps, en raison de l’espace entre le tubage et la roche consolidée et/ou des fissures qui se forment dans les zones les plus tendues du tubage. Un tel envasement use non seulement les pièces de la pompe à main, mais peut également entraîner des problèmes d’apparence du point de vue de l’utilisateur lorsque la vase pénètre dans l’alimentation en eau potable.
  • Arrêter de forer lorsqu’on rencontre de l’eau pour la première fois: On peut économiser beaucoup d’argent ainsi ; en Ethiopie, par exemple, forer à 50 mètres au lieu de 60 mètres réduit le coût du forage de 13% (Calow et al., 2012). Toutefois, si le forage ne pénètre pas dans l’aquifère principal, la quantité d’eau disponible après la construction peut être problématique, même si le forage passe l’essai de pompage.

3) Interférer avec les données d’essai de la pompe ou raccourcir le temps d’essai de la pompe

Cela permet de masquer les sites à faible rendement et les sites infructueux. Ces forages seront inévitablement à faible rendement après construction ou, dans le pire des cas, à sec.

La nécessité pour les foreurs d’avoir recours aux pratiques ci-dessus en Ouganda est exacerbée par le fait que, dans de nombreux cas, le forfait auquel les foreurs sont payés pour un forage réussi n’est pas assez élevé. De plus, la supervision par un hydrogéologue qualifié est rare.

Que faire en ce qui concerne les contrats clés en main ?

Les contrats clés en main devraient-ils continuer à être utilisés en Ouganda ? Les avis diffèrent d’un acteur à l’autre : la majorité des maitres d’ouvrage en Ouganda estiment que le recours aux contrats clés en main devrait se poursuivre, tandis que les consultants et le Ministère de l’eau et de l’environnement estiment qu’ils devraient cesser, au vu des problèmes de qualité des travaux décrits ci-dessus.

Le Ministère de l’eau et de l’environnement est allé jusqu’à publier une directive en janvier 2017 décourageant l’utilisation de contrats clés en main, et préconisant plutôt que les contrats subdivisés, un pour le choix du site (attribué à un hydrogéologue/consultant) et un pour le forage et l’installation (attribué à un entrepreneur en forage) soient dorénavant utilisés. Les opinions des foreurs eux-mêmes semblent impartiales ; la plupart d’entre eux ne s’opposent pas à l’idée de travailler dans le cadre de contrats clés en main ; ils demandent simplement à ce que les prix forfaitaires que les maitres d’ouvrage soient prêts à payer pour des forages réussis augmentent dans le futur, pour qu’ils ne soient pas obligés de prendre de bricoler pour faire des économies sur place.

Qu’en pensez-vous?

 Alors, qu’en pensez-vous? Avez-vous de l’expérience en matière de contrats clés en main pour forer des puits d’eau, ou d’autres pratiques que vous aimeriez partager ? Vous pouvez répondre ci-dessous en postant un commentaire, ou vous pouvez participer au webinaire en direct le 14 mai (inscriptions ici)

Références

Calow, R., MacDonald, A., and Cross, P. (2012). Corruption in rural water supply in Ethiopia. In J. Plummer (Ed.), Diagnosing Corruption in Ethiopia: Perceptions, realities and the way forward for key sectors (pp 121-179). Washington DC, USA: World Bank. Available from https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/8555.pdf

Casey, V., Brown, L., Carpenter, J.D., Nekesa, J., and Etti, B. (2016). The role of handpump corrosion in the contamination and failure of rural water supplies. Waterlines, 35(1), 59-77. Available from https://www.developmentbookshelf.com/doi/full/10.3362/1756-3488.2016.006

Liddle, E.S. and Fenner, R.A. (2018). Review of handpump-borehole implementation in Uganda, Nottingham, UK: BGS (OR/18/002). Available from https://nora.nerc.ac.uk/id/eprint/520591/

[1] Les trous de forage peuvent être ” entièrement tubés ” ou ” ouverts “. Si un trou de forage est ” entièrement tubé “, toute la partie verticale est tubée, avec des grilles dans les couches d’eau. Toutefois, si le trou de forage est ” ouvert “, seules les zones non consolidées du forage vertical sont tubées – le reste de la roche consolidée est laissé à l’état “ouvert ” (pas de tube ni de grilles).

Un pouce équivaut à 2,54 cm (note du traducteur).

Remerciements

Ce travail fait partie du projet Hidden Crisis du programme de recherche UPGro – cofinancé par le NERC, le DFID et l’ESRC.

Le travail de terrain entrepris pour ce rapport fait partie de la recherche doctorale des auteurs à l’Université de Cambridge, sous la supervision du Professeur Richard Fenner. Ce travail sur le terrain a été financé par le Ryoichi Sasakawa Young Leaders Fellowship Fund et UPGro : Hidden Crisis.

Merci à ceux d’entre vous de l’Université de Makerere et de WaterAid Ouganda qui m’ont apporté un soutien logistique, y compris sur le terrain, pendant que je menais les entretiens pour ce rapport (en particulier le Dr Michael Owor, Felece Katusiime et Joseph Okullo de l’Université Makerere et Gloria Berochan de WaterAid Uganda). Merci également à tous les répondants d’avoir été enthousiastes et disposés à participer à cette recherche.

Photo: ” Les membres de l’équipe Hidden Crisis utilisent une caméra de CCTV pour l’observation du fond de puits de la construction d’un forage communautaire ” (Source: ‘BGS © NERC. UPGro Hidden Crisis Project.’)

 

Professional Water Wells Drilling: Country Assessments of the Sector – UPDATED!

From 2003 to date, assessments of borehole drilling sector cost-effectiveness and professionalism have been undertaken for the following countries:

Do you know of other national assessments of borehole drilling sector cost-effectiveness and professionalism, perhaps in your own country? If so, please share in the comments below.

Update 21 August 2018

Key points:

  • “Turn-key” contracts should not be used, instead implementing agencies should procure an independent consultant for drilling and supervision and pay drillers for drilling/installation work done.
  • The research supports the guidance set out Danert K., Gesti Canuto J. (2016) Professional Water Well Drilling. A UNICEF Guidance Note  , Unicef , Skat Foundation http://www.rural-water-supply.net/en/resources/details/775

Favouring Progress: Yemen’s Water Scarcity Dilemma of the 21st Century

Our RWSN Guest blogger Muna Omar takes a critical look at the issue of dwindling water supply in Yemen’s capital city

The population of Sana’a, the capital city of Yemen, depend on deep wells that are usually dug to a maximum depth of 200 meters for their drinking water. The wells draw on a cretaceous sandstone aquifer northeast and northwest of the city, with a third of the wells operated by the state-owned Sana’a Local Corporation for Water Supply and Sanitation drilled to 800 to 1,100 meters. The combined output the corporation’s wells barely meet 35% of needs of Sana’a growing population which includes displaced people, asylum seekers, refugees and other newcomers.

Public piped water delivery is once every 40 days to some houses, while others don’t receive piped water at all. Sana’a’s population is thus supplied either by small, privately owned networks, hundreds of mobile tankers and water from people’s own private wells. As water quality has degenerated, privately owned kiosks that use a water filtration method to purify poor-quality groundwater have spread in Sana’a and other towns. Many people rely on costly water that is provided by private wells supplying tankers. These tankers don’t really consider appropriate cleaning, so the quality of the water is questionable.

Despite the challenges with pumping due to a shortage of fuel and with rising prices, private well owners are trying to capture the remains of the valuable groundwater resources before their neighbours do. Coupled with the on-going war, drought sees Yemen facing a major water crisis. Water table data is based on old research which can be challenging to verify now. Given the data and the current severe situation as water use exceeds aquifer recharge, it is estimated that the water table drops by approximately 2-6 feet annually.

Although Sana’s groundwater is probably the best water in Yemen, it is considered below acceptable standards for human consumption as water infrastructure has been damaged by warplanes and the sanitation workers went on strike because they didn’t get their salary. The latter left plenty of garbage on the streets that led to contamination of drinking water supplies. Meanwhile wastewater began to leak out into irrigation canals and contaminate drinking water supplies. Inadequate attention to groundwater pollution has directly affected the quality of Sana’a’s drinking water supplies.

It Yemen, as a whole, it is estimated that about 14.5 million people don’t have sustainable access to clean drinking water. Inadequate water supply has affected the country with the worst outbreak of cholera in the human history. Over 1 million suspected cases of cholera have been reported in Yemen from 27 April 2017 to present day. Other water-borne diseases include a recent peak in diphtheria that reached 1,795 probable cases with 93 Associated Deaths and a case fatality rate (CFR) of 5.2% by 19 May 2018.

Yemen’s water problem is not only immediate with groundwater resources under pressure as never before to meet not only drinking water needs, but also demands for irrigation. In Yemen, the pressures of climate change, demographic change and the on-going conflict place an immense burden on professionals working in the country. The enormity of the urgent needs mean that water resources management is neglected, despite being absolutely essential for the future of Yemen’s population.

Sana’a groundwater resources are significantly depleted in many areas and acknowledged globally as one of the world’s scarcest water supplies. Sana’a may be the first capital city in the world to run out of water. Looking forwards, how can the country produce more food, raise farmer incomes and meet increase water demands if there is less water available?

Clearly, there are several interrelated aspects contributing to the current water crisis in Sana’a specifically and Yemen in general, and the population has to innovate to find solutions. Future supply options include pumping desalinated water from the Red Sea over a distance of 250 km, over 2,700 meter-high mountains into the capital, itself located at an altitude of 2,200 meters. However, the feasibly of this is questionable with the enormous pumping cost would push the price of water up to $10 per cubic meter. Other options to supply Sana’a from adjacent regions are fraught due to water rights.

Groundwater data is the critical foundation for water managers to both prevent problems and formulate solutions. Data is lacking in many of Yemen’s groundwater basins. Even heavily used basins have no record of how much groundwater was withdrawn and remains in the aquifers, where it was pumped from? Nor are adequate data available on groundwater quality or aquifer characteristics. Furthermore, while the drought and other cutbacks on surface water supplies are motivating groundwater users to drill new or deeper wells in increasing numbers despite the fact that well owners don’t know how their aquifer is doing and so can’t anticipate changes. There is lack of data on private wells.

Lack of groundwater data in Yemen is not the result of ignorance about its importance, but is rather the victim of chronic underfunding and politics, which have been exacerbated by the on-going conflict. The war has made it almost impossible to measure and manage groundwater development and secure its long-term sustainability.

Having just completed the online course on “Professional drilling management” led by Skat Foundation, UNICEF, and the United Nations Development Programme Cap-Net, I have learned about the need to develop our knowledge in this regard. The course highlighted important immediate and long-term actions for Yemen:

  • Raise awareness within Yemen of the groundwater issues faced by the country.
  • Find practical ways to better understand groundwater, regulate its extraction, introduce control mechanisms and engage with the local population to develop effective actions.
  • Build capacity of government, NGOs, consultants, policy makers and beneficiaries through training in groundwater management.
  • Invest in building rain-water harvesting facilities in rural areas so the people don’t have to walk miles to collect water.
  • Invest in re-building infrastructure alongside improving water resources management.

Muna Omar is an Ethiopian refugee and a young water professional, living and working in Sana’a, undertaking monitoring and evaluation of humanitarian programmes in the water, sanitation and hygiene (WASH), health and nutrition sectors such as a cholera-response project, and an executive assistant with a local NGO.

This article was first published in GeoDrilling International and is reproduced with permission and thanks.

Three common myths about solar-powered water pumping

By Andrew Armstrong (Water Mission), RWSN co-lead for Sustainable Groundwater Development

Solar pumping is the trendiest technology in rural water supply today. Policy-makers and practitioners are eager to better understand its benefits and limitations and the private sector is responding with a variety of product offerings. Much of this interest is motivated by the Sustainable Development Goal to increase water service levels in the most remote areas. A more compelling driver is that rural water users are willing to pay for service that is accessible near or within their homes. There is currently no more promising technology for meeting these expectations in off-grid settings than solar pumping. Despite this high interest and the fact that solar pumping technology has been around for decades, a great deal of misinformation is being propagated.

This post aims to address a few of the most common misconceptions.

Myth #1: Solar pumping is too complicated and not appropriate for remote, rural settings

The most common barrier to adoption of solar pumping is misunderstanding of its complexity and applicability. The technology is often avoided because of perceived technical and management challenges, which are in fact common to any rural water supply system. In reality, the design and installation processes associated with solar pumping are no more complicated than other motorized pumping schemes. Operation and maintenance is more straightforward than with handpumps and generator powered schemes which, as indicated in recent evaluations published by UNICEF and the Global Solar and Water Initiative, likely leads to higher functionality and reliability rates.

Solar pumps are applicable across the same head and flow profiles as grid- and generator-powered pumps, and most solar pumping equipment available today is essentially “plug and play”. External power backup for periods of low sunlight are rarely necessary if water demand is estimated and storage is sized appropriately. In addition, current off-the-shelf computer software tools simplify equipment selection and automatically consider daily and seasonal weather and solar irradiation fluctuations when estimating water outputs.

The high capital cost of solar pumping equipment often brings its large-scale applicability into question. However, the life-cycle cost benefits of solar pumping are well documented and are within and on the lower end  of IRC’s WASHCost benchmark ranges for piped schemes and boreholes fitted with handpumps. There is no fuel cost associated with solar pumps, and the cost of maintaining power generation equipment is greatly reduced because solar modules have no moving parts and long functional lifespans. Furthermore, the cost of solar modules, which represent the most expensive element of a solar pumping scheme, continues to decrease at a rapid rate.

graph1
Click here to read about the advantages of solar pumps compared to alternative technologies commonly utilized in remote, rural settings.

Myth #2: All solar powered water pumping equipment is created equal

Equipment manufacturers have taken advantage of demand and have flooded the market with solar pumping products of all varieties and price tags. Unfortunately, many are of poor quality and likely to fail in a fraction of the lifespan of higher priced, higher quality equipment. Low-quality products seldom come with warranties covering the first few years of operation during which failures are most likely to occur. Uninformed customers often fall into the trap of choosing cheaper equipment without considering that low-quality equipment fails quicker and costs more to maintain in the long-term. This results in solar pumping schemes which were expected to function for years failing and being abandoned after a few months in operation. The best way to guard against this is to stick with brands that have a proven track record for durability and reliability, even if it costs more up-front. It is also important to verify that products adhere to internationally-recognized certification and testing standards.

Another related challenge is that imitation spare parts for major brands are easier to find than authentic ones. Logos and barcodes can be forged such that it becomes difficult to detect if a part is counterfeit. This issue can be resolved by sourcing products from trusted dealers with good technical support capacity. The private sector can also have a positive influence on product quality. By providing local dealers with exclusive access to advanced training and support networks, major manufacturers can incentivize sales of quality equipment. In fact, some solar pumping suppliers such as Bluezone Malawi  are choosing to base their business model solely on high-quality products.

Myth #3: Scaling-up solar powered water pumping will lead to widescale depletion of groundwater aquifers

There is concern that solar pumps, because they can operate automatically whenever the sun shines, could pose a long-term threat to groundwater resources. It is true that exploitation of groundwater paired with low or misunderstood aquifer recharge can lead to potentially irreversible depletion, and there is a deficiency of good hydrogeological data in countries where the most interest is being placed on solar pumping. However, abstraction technology is just one of many factors that influence aquifer sustainability and solar pumping should not be devalued because of potential risks which can be mitigated. It is also important to note that the risk of groundwater depletion due to over abstraction with solar pumps depends on the application. Domestic supply withdrawals, in comparison to agriculture and protracted emergency applications, are likely to have negligible impacts.

Below are some actions that can be taken to mitigate the risk of groundwater depletion:

  • Proper borehole development and pump sizing to safe yield – Ensures solar pumps are physically incapable of depleting aquifers. A good resource for this is the RWSN/UNICEF Guidance Note on Professional Water Well Drilling. Simple control measures such as float valves and switches can also be employed to prevent wasting.
  • Better groundwater monitoring alerts authorities to potential risk areas. Many countries successfully employ remote monitoring systems (see, for example, the USGS’s National Groundwater Monitoring Network. Read more here.
  • Water pricing in the form of tariff collections and abstraction charges enables sustainable and equitable allocation of groundwater resources, but requires sound management built on transparency and accountability. Prepaid water metering technologies may also play a role.

Further resources

Resources are available to equip rural water professionals with knowledge and skills and stop the spread of misinformation about solar pumping. Of note:

In order to generate rich discussion and continue raising awareness of existing resources around solar pumping, the RWSN Sustainable Groundwater Development theme will host a three-week e-discussion from 28 May to 15 June 2018. For more information or to participate in the e-discussion, join the RWSN Sustainable Groundwater Development DGroup.

(Photo credits: Water Mission)

 

 

Why is Groundwater Data important?

by Dr Fabio Fussi, Università degli Studi di Milano-Bicocca

The role of groundwater data in rural water supply has changed markedly in over the last few year:

6th RWSN Forum in Kampala, 2011: Some pilot projects of groundwater data collection and organization is presented. Uganda is presenting its groundwater atlas, a promising example for other countries.

7th RWSN Forum in Abidjan,  2016: there were entire sessions dedicated to groundwater data collection, mapping, analysis and application, with presentation of country programs from national water institutions, some example of international projects to create continental or world groundwater database (e.g. the groundwater atlas of Africa from the British Geological Survey) and application of groundwater data analysis.

What has raised the interest up to this level? There are several factors:

  • Data collection has become easy, with IT tools available in portable devices and smartphones for water point mapping. The increased availability of information has allowed to use these data to take decision about groundwater development and monitoring.
  • Depletion of groundwater resources (both in quantity and quality) requires the definition of sustainable groundwater development strategies and monitoring the effectiveness and impact of their implementation.
  • International donors have an increased interest to support countries to create groundwater information system, and national water institutions have, in several cases, understood the importance to put effort in this.

This seems a promising path for the future to support an effective and sustainable use of groundwater. However there are critical factors that must be taken into consideration:

  1. An increasing amount of data are available, but still there is lack of control in their quality. National databases are full of information, but limited effort is spent to revise them and depurate from mistakes. If this aspect is not properly considered, the risk of incorrect interpretation is high, leading to the formulation of incorrect strategies.
  2. Despite of the huge amount of information and the availability of powerful tools to process it, the level of data analysis to deepen our understating of groundwater system and give a practical support for complex decisions seems still basic. At this time we need creativity, technical capacity and collaboration between decision makers and scientist to unlock the potential of massive groundwater databases.
  3. An unbelievable amount of information is available, held by national water authorities and organizations involved in groundwater development. Most of this information is in hard copy, almost unused, not yet transformed into numeric database. This task is huge and time consuming, but if we can support it, we avoid the risk to loose relevant data and in they can be easily used to take decisions.

In the coming years the effect of climate change and the increase in water needs (due to population growth and improved living conditions) will lead to a more intense exploitation of groundwater resources, whose feasibility and sustainability must be carefully evaluated by a detailed interpretation of reliable data.

Getting groundwater off the ground

How do we  raise capacity for borehole drilling and its management globally? If everyone is to have access to safe and affordable drinking water by 2030, in line with the UN Sustainable Development Goals, detailed attention is required for the siting, drilling and installation of boreholes in every single project in every country. Alas, this is not always the case. The result is that many boreholes fail within a very short time.

RWSN members are telling us that they want more in-country training.  The article linked below provides some suggestions. Do you have ideas or incentives for government and private enterprises invest in skill development in the groundwater sector, and in the rural water sector at large?

To find out more:

http://www.geodrillinginternational.com/geodrilling/issue/1179329/getting-groundwater-ground

TrainingdrillingsupervisorsinSierraLeonein2014-860x560

New 2017 RWSN Webinar series (18th April – 13th June 2017)

ENG: RWSN is delighted to announce the first of the 2017 series of webinars (on-line seminars) on rural water supply, running every Tuesday from April 18th, 2017 until June 13th, 2017. This series includes 9 weekly sessions on topics, which were presented and debated during the 2016 RWSN Forum in Abidjan, and related to the RWSN themes. For instance, we will find out about local government superheroes and their role in realising the human right to water and sanitation, but also hear about emerging cross-cutting issues such as improving WASH services in protracted crises. Each session will be bilingual, with one webinar in English as well as another language (French or Spanish) as we are trying to cater for a wide and varied audience. The format includes 1-2 presentations, comments from discussants, and a Question & Answer session where all participants are invited to ask questions or make comments. For more details on the first 2017 series, please refer to the table below.
The webinars in English start at 2.30 pm Paris time/ 1.30 pm London time/ 8.30 am Washington DC time. You can check your local time here. To register for one or all of the webinars, and receive an invitation please click on the following link: http://bit.ly/2movPGM

*******

FR : Le RWSN a le plaisir de vous annoncer une nouvelle série de webinaires en 2017 (les séminaires en ligne) qui auront lieu les mardis, du 18 avril 2017 au 13 juin 2017. Cette série comprend 9 sessions hebdomadaires sur des sujets ayant été présentés et débattus lors du RWSN Forum à Abidjan en 2016, et correspondant aux thèmes RWSN. Par exemple, on apprendra le rôle des superhéros des gouvernements locaux pour la réalisation du droit à l’eau et à l’assainissement, mais on découvrira également des sujets transversaux émergeants tels que l’amélioration des services EAH dans les cas de crises prolongées. Chaque session sera bilingue, avec un webinaire en anglais et dans une autre langue (espagnol ou français) selon le sujet, nous souhaitons en effet toujours toucher le public le plus large dans toute sa diversité ! Les thèmes abordés sont le droit humain à l’eau et à l’assainissement, l’auto-approvisionnement, la durabilité des services et le cadre de référence d’applicabilité des technologies. Chaque session comprend 1 ou 2 présentations, des réactions de la part d’un ou plusieurs intervenants et une partie Questions/Réponses lors de laquelle tous les participant(e)s peuvent poser leurs questions ou réagir aux échanges. Vous trouverez le détail de cette première série de webinaires de 2017 dans le tableau ci-dessous.
Les webinaires en français sont à 11h heure de Paris/ 9h heure de Dakar. Pour vérifier l’horaire du webinaire, vous pouvez cliquer ici. Pour vous inscrire à l’un ou à tous les webinaires de cette série et recevoir une invitation, cliquez ici : http://bit.ly/2movPGM

*******
ES: Desde el secretariado del RWSN tenemos el gusto de anunciar la nueva serie de webinars (seminarios en linea), la cual se efectuará entre el 28 de abril y el 13 de junio del 2017. Esta serie comprende 9 sesiones (una sesión por semana) respecto a los temas discutidos en el Foro RWSN en Abidjan en 2016, los cuales corresponden con los ejes temáticos del RWSN. Por ejemplo, aprenderemos sobre el rol de los superhéroes de los gobiernos locales para la realización de los derechos al agua y a saneamiento, pero también descubriremos temas transversales como la mejora de los servicios en agua y saneamiento en crisis humanitarias prolongadas. Cada sesión se implementará en dos idiomas, con una sesión en inglés y la otra o en francés o en español según el tema – de esta forma esperamos poder alcanzar a un público amplio y diverso. El formato incluye, para cada sesión, 1-2 presentaciones en línea, un comentario de al menos una persona, y una sesión de Preguntas y Respuestas donde todos los participantes tendrán la oportunidad de hacer preguntas o comentarios. Para mayor información sobre la serie por favor hacer clic en el vínculo abajo.

Los webinars en español empiezan a la 16.30 (hora de Madrid)/ 09.30 (hora de la Ciudad de México). Se pueden verificar los horarios para su localidad aqui. Para inscribirse a uno o a todos los webinarios de esta serie, haga clic aquí: http://bit.ly/2movPGM

18 April Improving WASH services in protracted crises
18 avril Améliorer les services EAH dans les situations de crises prolongées

25 April Professional Water Well Drilling: Guidance for Ensuring Quality
25 avril Le forage de puits d’eau professionnel : des orientations pour une meilleure qualité

02 May Making rights real – human rights guidance for practitioners
2 mai Faire des droits une réalité – conseils pratiques sur les droits de l’homme pour les professionnels

09 May Making water work for women – inspiring experiences
9 mai Faire fonctionner l’eau pour les femmes : des expériences inspirantes (1ère partie)

16 May Tackling corruption in rural WASH
16 mai S’attaquer à la corruption dans l’eau, l’assainissement et l’hygiène en milieu rural

23. May Making water work for women – inspiring experiences II
23 mai Faire fonctionner l’eau pour les femmes : des expériences inspirantes (2ème partie)

30. May Household wells: A lifeline in Nigeria?
30 mai Les puits d’eau résidentiels: une bouée de sauvetage au Nigéria ?

06 Jun Country-led monitoring
06 juin Le suivi au niveau des pays
6 de junio Monitoreo a nivel de países

13 Jun Searching for universal sustainability metrics for rural water services
13 de junio Buscando maneras universales de medir la sostenibilidad para servicios rurales de agua potable


More Information

» Register

Obituary: Robin Temple Hazell (1927-2017)

by Dotun Adekile, Nigeria

I regret to inform you all that Robin Temple Hazell, one of the pioneers of systematic groundwater development in Africa, a member of the RWSN and a contributor to Dgroup discussions, passed away in his home, Bodmin, Cornwall on Sunday, 19th February, 2017. He would have been 90 years on 12th  March, 2017.

Continue reading “Obituary: Robin Temple Hazell (1927-2017)”

Groundwater Management into River Basin Organizations

A one-day training course in Dar es Salam, Tanzania Wednesday 20th, 2016.

 Background: Transboundary water management is of great importance to Africa as it has been emphasized in the African Water Vision 2025. Almost all Sub-Saharan African countries share at least one international river basin. In Africa there are about sixty transboundary lake and river basins and at least eighty transboundary aquifer basins. A training manual has been complied by a network of partners, including AGW-Net, ANBO, BGR, Cap-Net, IGRAC, IMAWESA, IWMI, IGRAC, and A4A – aqua for all in response to the needs expressed and is designed to help develop capacity on groundwater management within the basin organizations.

The Course: The 6th AWW (http://africawaterweek.com/6/) that takes place in Dar es Salaam (Tanzania) in July 18-22, 2016, will launch the manual, and at the same time implement a one-day training course on groundwater management. The course aims to: (1) promote sustainable groundwater resources management within the framework of IWRM in RBOs; (2) make groundwater resources in Africa more “visible” to water managers who are required to manage it sustainably; (3) raise awareness on the importance of groundwater resource to Africa, and especially in light of the growing impacts of climate change. Continue reading “Groundwater Management into River Basin Organizations”